d. Relation to p.d.f. for continuous distributions:

i. \(F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy \).

ii. If \(f_X \) is continuous at \(x_1 \), and if \(x_2 \) is close to \(x_1 \), and
\(x_2 > x_1 \), then
\[F_X(x_2) - F_X(x_1) = P(x_1 < X \leq x_2) = \int_{x_1}^{x_2} f_X(y) \, dy \approx (x_2 - x_1) f_X(x_1) \]

iii. Hence
\((F_X(x_2) - F_X(x_1))/(x_2 - x_1) \approx f_X(x_1) \)

iv. Hence
\(dF_X(x_1)/dx_1 = f_X(x_1) \): Fundamental theorem of calculus.

v. Example: \(f_X(x) = 1 \) for \(x \in (0, 1) \), and equal 0 elsewhere.

- Then
\[F_X(x) = \begin{cases}
0 & \text{if } x \leq 0 \\
 x & \text{if } x \in (0, 1) \\
1 & \text{if } x \geq 1
\end{cases} \]

- Then
\[F_X'(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } 1 \in (0, 1) \\
0 & \text{if } x > 1 \\
\text{undefined} & \text{if } x \in \{0, 1\}
\end{cases} \]: 2.3

M. Describing Distributions:

1. Typical Values

a. The expectation, mean, or average value.
i. Define:

- for continuous dist\(\)s as \(\int x f_X(x) \, dx\)

 - Example: Exponential distribution with \(f_X(x) = \exp(-x)\) for \(x \in [0, \infty)\).

 Integration by parts shows expectation is 1.

- for discrete dist\(\)s as \(\sum x P_X(x)\).

 - Example: Count from one die: \(E[=]1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6} = 3.5\): Note that this is not a potential data value.

 - Example: Count from two dice:

\(x\)	\(P_X(x)\)	\(x P_X(x)\)
2	1/36	1/18
3	2/36	3/18
4	3/36	6/18
5	4/36	10/18
6	5/36	15/18
7	6/36	21/18
8	5/36	20/18
9	4/36	18/18
10	3/36	15/18
11	2/36	11/18
12	1/36	6/18

 Sum of last column is \(\frac{128}{18} = 7\).

 - Note that expectation is point of symmetry, if distribution is...
symmetric.

- Note that expectation of sum is sum of expectation: always holds.