d. Relation to p.d.f. for continuous distributions:
 i. \(F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy \).
 ii. If \(f_X \) is continuous at \(x_1 \), and if \(x_2 \) is close to \(x_1 \), and \(x_2 > x_1 \), then
 \(F_X(x_2) - F_X(x_1) = P(x_1 < X \leq x_2) = \int_{x_1}^{x_2} f_X(y) \, dy \approx (x_2 - x_1)f_X(x_1) \).
 iii. Hence \((F_X(x_2) - F_X(x_1))/(x_2 - x_1) \approx f_X(x_1) \).
 iv. Hence \(dF_X(x_1)/dx_1 = f_X(x_1) \): Fundamental theorem of calculus.
 v. Example: \(f_X(x) = 1 \) for \(x \in (0, 1) \), and equal 0 elsewhere.
 • Then
 \[F_X(x) = \begin{cases}
 0 & \text{if } x \leq 0 \\
 x & \text{if } x \in (0, 1) \\
 1 & \text{if } x \geq 1
 \end{cases} \]
 • Then
 \[F_X(x) = \begin{cases}
 0 & \text{if } x < 0 \\
 1 & \text{if } x \in (0, 1) \\
 0 & \text{if } x > 1 \\
 \text{undefined} & \text{if } x \in \{0, 1\}
 \end{cases} \]

M. Describing Distributions:
1. Typical Values
 a. The expectation, mean, or average value.
 i. Definition:
 • for continuous dists as \(\int x f_X(x) \, dx \)
 • Example: Exponential distribution with \(f_X(x) = \exp(-x) \) for \(x \in [0, \infty) \).
 b. Integration by parts shows expectation is 1.
 c. for discrete dists as \(\sum x p_X(x) \).
 • Example: Count from one die:
 \[E[=]1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 21/6 = 3.5 \] Note that this is not a potential data value.
 • Example: Count from two dice:
 \[
 \begin{array}{ccc}
 x & p_X(x) & xp_X(x) \\
 2 & 1/36 & 1/18 \\
 3 & 2/36 & 3/18 \\
 4 & 3/36 & 6/18 \\
 5 & 4/36 & 10/18 \\
 6 & 5/36 & 15/18 \\
 7 & 6/36 & 21/18 \\
 8 & 5/36 & 20/18 \\
 9 & 4/36 & 18/18 \\
 10 & 3/36 & 15/18 \\
 11 & 2/36 & 11/18 \\
 12 & 1/36 & 6/18 \\
 \end{array}
 \]
 Sum of last column is \(128/18 = 7 \).
 • Note that expectation is point of symmetry, if distribution is symmetric.
 • Note that expectation of sum is sum of expectations: always holds.

This page intentionally left blank.