1. A random variable X has the density $\exp(-|x|)/2$ for $x \in (-\infty, \infty)$. Calculate the moment generating function $m_X(t)$ for X. Include information on which values of t make $m_X(t)$ finite.

$$m_X(t) = \int_{-\infty}^{\infty} \exp(tx) \exp(-|x|)/2 \, dx$$

$$= \int_{-\infty}^{0} \exp(tx) \exp(x)/2 \, dx + \int_{0}^{\infty} \exp(tx) \exp(-x)/2 \, dx$$

$$= \int_{0}^{\infty} \exp(-tx) \exp(-x)/2 \, dx + \int_{0}^{\infty} \exp(tx) \exp(-x)/2 \, dx$$

The first integral is finite if $1 + t > 0$, and the second integral is finite if $1 - t > 0$. Both of these inequalities are true if $|t| < 1$. For such values of t, change variables to obtain

$$m_X(t) = \int_{0}^{\infty} \frac{\exp(-y)}{2(1 + t)} \, dy + \int_{0}^{\infty} \frac{\exp(-y)}{2(1 - t)} \, dy$$

$$= (1 + t)^{-1}/2 + (1 - t)^{-1}/2.$$

This is finite as long as $1 + t$ and $1 - t$ are both positive, or if $|t| < 1$.

2. Two probabilists consider a random variable taking a value between zero and one, with probability spread evenly over this region. Probabilist A uses the density $a_X(x) = \begin{cases} 1 & \text{if } 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$. Probabilist B uses the density $b_X(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$.

Which of these is the right density, or does the choice not matter? The two densities are entirely equivalent, because integrals with the integrand changed at a countable number of points (two here, at 0 and 1) are the same.

3. Suppose that a random variable X has probability function $f_X(x) = A/x$ for $x \in (1, 2)$.

a. What is the value of the constant A?

Note that $1 = \int_{1}^{2} f_X(x) \, dx = \int_{1}^{2} A/x \, dx = A \int_{1}^{2} 1/x \, dx = A(\log(2) - \log(1)) = A \log(2)$. Hence $A = 1/\log(2) = 1.443$.

b. Calculate $E(X)$.

$E(X) = \int_{1}^{2} x f_X(x) \, dx = \int_{1}^{2} A x \, dx = A \int_{1}^{2} x \, dx = 1/\log(2) = 1.443$.

c. Calculate the median of X.

The median m satisfies $1/2 = \int_{1}^{m} f_X(x) \, dx = (\log(2))^{-1} \int_{1}^{m} 1/x \, dx = (\log(2))^{-1} \log(m)$.

Then $\log(m) = (1/2) \log(2) = \log(\sqrt{2})$, and $m = \sqrt{2} = 1.414$.

d. Calculate $V(X)$.

$E(X^2) = \int_{1}^{2} x^2 f_X(x) \, dx = \int_{1}^{2} A x \, dx = A \int_{1}^{2} x \, dx = A x^2/2|_1^2 = A(2 - 1/2) = 3/(2 \log(2))$, and so $V(X) = E(X^2) - E(X)^2 = 3/(2 \log(2)) - (1/\log(2))^2 = 0.08267358$.

e. Calculate $P(X \leq 3/2)$.
\[P(X \leq 3/2) = \int_{1}^{3/2} f_X(x) \, dx = \log(3/2)/\log(2) = \log(3)/\log(2) = 10.5850. \]

4. Suppose that a random variable \(X \) has expectation 0 and variance 1. Give a bound to \(P(|X| \geq 2) \).

Use the Tchebysheff inequality to show \(P(|X| \geq 2) \leq \frac{V(X)}{2^2} = 1/4 \).

5. Suppose that a random variable \(X \) has probability function

\[f_X(x) = \exp(-x^2/2)/\sqrt{2\pi}, \]

and let \(Y = \exp(X) \) (that is, \(Y = e^X \) for \(e \) the base of the natural log). Give the density for \(Y \). Be sure to specify the set of \(Y \) values on which its density is positive.

Since \(r(x) = \exp(x) \), then \(r^{-1}(y) = \log(y) \), for \(\log \) the natural log with base \(e \). Hence

\[f_Y(y) = f_X(r^{-1}(y)) \frac{d}{dy} r^{-1}(y) = \exp(-\log(y)^2/2) \frac{1}{\sqrt{2\pi} y} \text{ for } y > 0, \text{ and } 0 \text{ otherwise.} \]