3. Distribution of the studentized sample mean

a. Again suppose $X_j \sim \mathcal{N}(\mu, \sigma^2)$, independent.

b. Then $\sqrt{n}(\bar{X}_n - \mu)/\sigma \sim \mathcal{N}(0, 1)$, because:

 i. Note that $\bar{X}_n - \mu \sim \mathcal{N}(0, \sigma^2/n)$.

 c. When σ is unknown, it is often approximated by $\hat{\sigma} = \sqrt{Q_n/(n-1)}$.

 d. Unfortunately, $T = \sqrt{n}(\bar{X}_n - \mu)/\hat{\sigma}$ is not $\sim \mathcal{N}(0, 1)$, because:

 i. because of the variability in $\hat{\sigma}$.

 ii. Difference is noticeable for moderate n (smaller than 40).

 iii. A quantity divided by its standard deviation is called studentized.

 e. Distribution T of a standard normal divided by the square root of an independent χ^2 divided by degrees of freedom is called t distribution on $n - 1$ degrees of freedom.

 f. T probability density function $\propto (1 + t^2/k)^{-k/2-1/2}$, for k degrees of freedom of denominator, because:

 i. Standardize:

 • Divide numerator and denominator by σ

 • Subtract μ from X.
ii. \(T = XW^{-1/2}\sqrt{k} \), for \(X \perp W \), \(X \sim \mathcal{N}(0, 1) \), \(W \sim \chi^2_k \).

iii. \(Z = W \)

 - \(X = \sqrt{ZT}/\sqrt{k} \), \(W = Z \)
 - \(dX/dT = \sqrt{Z}/\sqrt{k} \), \(dW/dZ = 1 \), \(dW/dT = 0 \), \(dX/dZ \) irrelevant,
 - Jacobian is \(\sqrt{Z}/\sqrt{k} \).

iv. Joint probability density function of \(X \) and \(W \) is

\[
\frac{\exp(-x^2/2)}{\sqrt{2\pi}} \times w^{k/2-1} \exp(-w/2) 2^{-k/2} \frac{\Gamma(k/2)}{\sqrt{2\pi}}.
\]

v. Joint probability density function of \(T \) and \(Z \) is

\[
\frac{\exp(-z t^2/(2k))}{\sqrt{2\pi}} z^{k/2-1} \exp(-z/2) 2^{k/2} \Gamma(k/2) \sqrt{k}.
\]

vi. \(Z = K \exp(-z(t^2/k + 1)/2) z^{k/2-1/2} \) for \(K = 2^{-k/2}/(\sqrt{2\pi}\Gamma(k/2)) \).

vii. Marginal probability density function of \(T \) is

\[
K'(t^2/k + 1)^{-k/2-1/2},
\]

because:

\[
f_T(t) = \int_0^\infty K \exp(-z(t^2/k + 1)/2) z^{k/2-1/2} \, dz = \int_0^\infty K \exp(-v) v^{k/2-1/2}(t^2/k + 1)^{-k/2-1/2} \, dv.
\]

viii. Distribution depends on degrees of freedom.

ix. Moment of order \(r \) for a \(T_k \) distribution exists only if \(k > r \).
x. \(k = \infty \) is equivalent to standard normal.

xi. Distribution with df 1 coincides with Cauchy. See Fig. 44.

\[e^{-x^2 / 2} \]

\[T \sim T_k \]

\[\Pr(T \leq t) \]

Fig. 44: T Densities

\begin{align*}
\text{DF} & \quad 1 \\
\text{DF 5} & \quad 30 \\
\text{DF \infty} & \quad \infty
\end{align*}

\[x \]

\[0 \]

\[0.1 \]

\[0.2 \]

\[0.3 \]

\[0.4 \]

\[-4 \]

\[-2 \]

\[0 \]

\[2 \]

\[4 \]

\[g. \] R calculates distributional quantities for \(T \sim T_k \).

\[i. \] Calculate probabilities \(\Pr(T \leq t) \) using \(pt(t, k) \).
ii. Calculate quantiles using \(qt(q, k) \) for \(q \in (0, 1) \).

4. Distribution of the ratio of sums of squares.

a. Suppose that

 i. \(Q_a \) and \(Q_b \) are \(\chi^2_a \) and \(\chi^2_b \) variables respectively.

 ii. \(Q_a \perp Q_b \)

b. Then the distribution of variable \(F = (Q_a/a)/(Q_b/b) \) is called the \(F \)-distribution with \(a \) and \(b \) degrees of freedom.

c. Distribution depends on numerator, denominator df.

 i. When \(a = 1 \), then \(F \) has the distribution of a \(t_b \) variable, squared.

 ii. When \(b \to \infty \), then \(F \) has the \(\chi^2_a \) distribution. See Fig. 45.

d. R can calculate distributional quantities for \(F \sim F_{a,b} \).

 i. Calculate probabilities \(P(F \leq f) \) using \(pf(f, a, b) \).

 ii. Calculate quantiles using \(qf(q, a, b) \) for \(q \in (0, 1) \).
Fig. 45: F Densities

- Densities for different degrees of freedom (DF):
 - DF 2,2
 - DF 2,20
 - DF 20,2
 - DF 20,20