D. The Expectation

1. The expectation represents a mean or average value.
 a. Suppose random variable X
 i. Set of possible values \mathcal{X}
 ii. Probability function $p_X(x)$
 b. $E(X) = \sum_{x \in \mathcal{X}} xp_X(x)$
 c. Operationalize expressing X as list indexed by integers, and do traditional infinite sum.
 i. Express X as $\{x_1, x_2, \ldots\}$.
 ii. $E(X) = \sum_{j=1}^{\infty} x_j p_X(x_j)$.
 d. Defines a typical value
 i. Explicit: explicitly and uniquely defined.
 - Explicit in that I gave you a formula above that returns a number
 ii. Unique: Does it depend on how we chose to express X?
 ii. Disadvantage: Sometimes isn’t defined.

2. Examples:
 a. Single Die
 i. $\mathcal{X} = \{1, \ldots, 6\}$
 ii. $p_X(x) = 1/6$ for all $x \in \mathcal{X}$.
 iii. $E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 21/6 = 3.5$
 b. Bernoulli trial
 i. Variable takes on value 1 with some probability $\pi \in [0, 1]$.
 ii. Variable is zero otherwise.
 iii. $\mathcal{X} = \{0, 1\}$

3. Define expectation only when expectation of absolute value is finite.
 a. Note $E(X) = \sum_{x \in \mathcal{X}, x < 0} xp_X(x) + \sum_{x \in \mathcal{X}, x > 0} xp_X(x)$.
 b. Problem: if $\sum_{x \in \mathcal{X}} |x| p_X(x) = \infty$ then either $\sum_{x \in \mathcal{X}, x < 0} |x| p_X(x) = \infty$ or $\sum_{x \in \mathcal{X}, x > 0} xp_X(x) = \infty$ or both.
 i. In the last case, $-\infty \sim \infty$ is ambiguous.
 ii. In the $\infty \sim \infty$ case, generally, one finds two different expressions $\mathcal{X} = \{x_1, x_2, \ldots\}$ and $\mathcal{Y} = \{y_1, y_2, \ldots\}$ so that $\sum_{x=1}^{n} x_j p_X(x_j)$ and $\sum_{y=1}^{n} y_j p_Y(y_j)$ do not converge to the same limit.
 c. Don’t define expectation if $\sum_{x \in \mathcal{X}} |x| p_X(x) = \infty$.
 iv. $E(X) = 0 \times (1 - \pi) + 1 \times \pi = \pi$.

4. A counterexample for which the expectation doesn’t exist.
 a. Suppose $P(X = j) = j^{-2}/c$ for $j = 1, 2, \ldots$.
 b. To make these probabilities sum to 1, $c = \sum_{j=1}^{\infty} j^{-2}$.
 i. Integral test shows that c finite.
 $\int_{1}^{\infty} \frac{dx}{x^2} = \lim_{a \to \infty} \int_{1}^{a} \frac{dx}{x^2} = \lim_{a \to \infty} -1 \frac{1}{x} \bigg|_{1}^{a} = \lim_{a \to \infty} (1 - \frac{1}{a}) = 1 < \infty$.
 ii. Euler showed that $c = \pi^2/6$, but we won’t need that.
 c. However, $E(X) = \sum_{j=1}^{\infty} \frac{1}{j^2}/c = \frac{1}{c} = \infty$.
 i. Integral test to see sum infinite:
 $\int_{1}^{\infty} \frac{1}{x} dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{x} dx = \lim_{a \to \infty} \ln(x) \bigg|_{1}^{a} = \lim_{a \to \infty} \ln(a) = \infty$.
 ii. See Fig. 13.

Fig. 13: Integral Test Applied to $\sum_{j=1}^{\infty} 1/j$

- Target Sum $\sum_{j=1}^{\infty} f(j)$
- Upper Bound $\int_{1}^{\infty} f(x) \, dx + f(1)$
- Lower Bound $\int_{1}^{\infty} f(x) \, dx$

5. The logarithm to be used in class is the natural log.
 a. Here and everywhere else it appears in class, $\ln(x)$ is the natural log function.
 i. Satisfies $e^{\ln(x)} = \exp(\ln(x)) = x$
 b. There are other alternative log definitions.
 i. Common $\log_{10}(x)$ satisfying $10^{\log_{10}(x)} = x$.
 - Called “common” because it was a tool for performing multiplications before the advent of floating-point portable calculators.
 - Also a device for measuring ship’s speed in knots.
 ii. Base-2 $\log_{2}(x)$ satisfying $2^{\log_{2}(x)} = x$.
 6. Expectation of a transformation of a random variable
 a. For now, restrict attention to discrete random variables.
 b. First construct probability function of a transformation of a random variable $r(X)$.
 i. Suppose that $Y = r(X)$ for some function r.
 ii. Want $p_Y(y)$.
 iii. Let $r^{-1}(\{y\}) = \{x | r(x) = y\}$ be the set of values for X giving a Y value of y.
 - Note that $\{s | Y(s) = y\} = \bigcup_{x \in r^{-1}(\{y\})} \{s | X(s) = x\}$.
 - Note that if $x_1 \neq x_2$, then $\{s | X(s) = x_1\} \cap \{s | X(s) = x_2\} = \emptyset$.
 - Then $p_Y(y) = P(r(X) = y) = \sum_{x \in r^{-1}(\{y\})} p_X(x)$.
 c. Expectation $E(r(X))$ is defined using original definition for new variable.
 i. Make new random variable $Y = r(X)$.
 ii. Determine range of possible values \mathcal{Y}.
 iii. Calculate probability function $p_Y(y)$.
 iv. Report $\sum_{y \in \mathcal{Y}} y p_Y(y)$.
 v. Note $\mathcal{X} = \bigcup_{y \in \mathcal{Y}} r^{-1}(\{y\})$.
 7. Calculation can be done summing over original space
 a. One need not first construct the distribution for the new variable.
 b. $E(r(X)) = \sum_{x \in \mathcal{X}} r(x) p_X(x)$.
i. \[\sum_{y \in Y} y p_Y(y) = \sum_{y \in Y} y \sum_{x \in r^{-1}(y)} p_X(x) \]
\[= \sum_{y \in Y} \sum_{x \in r^{-1}(y)} r(x)p_X(x) \]
\[= \sum_{x \in X} r(x)p_X(x) \]

8. Linearity
a. Let \(Y = aX + b \) for some constants \(a, b \)

b. Use transformation rule to show \(\mathbb{E}(Y) = a\mathbb{E}(X) + b \).
 i. \[\mathbb{E}(Y) = \sum_{x \in X} (ax + b)p_X(x) = a \sum_{x \in X} xp_X(x) + b \sum_{x \in X} p_X(x) = a\mathbb{E}(X) + b. \]

9. Other moments defined:
 a. The expectation is often referred to as the \textit{first moment} of a random variable \(X \);
 b. The \(r \)-th moment is defined as \(\mathbb{E}(X^r) \).
 c. The \(r \)-th central moment is defined as \(\mathbb{E}((X - \mathbb{E}(X))^r) \).

10. Describing spread
 a. Variance: \(\mathbb{V}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) \)
 i. \[\mathbb{V}(X) = \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) \]
 ii. Alternate formulation:
 • Square out what’s inside:
 \[\mathbb{V}(X) = \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) \]

 b. Standard deviation: average distance from expectation:
 \[\text{SD}(X) = \sqrt{\mathbb{V}(X)} \]
 c. Scaling: \(\mathbb{V}(aX + b) = a^2\mathbb{V}(X) \).
 i. \[\mathbb{V}(aX + b) = \mathbb{E}((aX + b - \mathbb{E}(aX + b))^2) \]
 \[= \mathbb{E}((aX + b - a\mathbb{E}(X) - b)^2) \]
 \[= a^2(\mathbb{V}(X)) \]
 d. Hence \(\text{SD}(aX + b) = |a|\text{SD}(X) \)
 e. Other dispersion measures: mean absolute deviation
 \[\mathbb{E}(|X - \mathbb{E}(X)|) \text{ or } \mathbb{E}(|X - \text{median}(X)|) \]
 i. MAD scales the same way as SD, but will lack some useful properties later.