5. Summation Tricks:
 a. For expectation: \(E(X) = \sum_x x p_X(x) \)
 i. For probabilities involving factorial of random variable value
 - Incorporate random variable value into the factorial.
 - If the factorial is in the numerator, move argument up by one: Negative binomial
 - If the factorial is in the denominator, move argument down by one: Binomial, Poisson
 ii. Re-parameterize the remainder of the quantities
 iii. Identify sum recognizable as summing to 1
 b. Second Moment:
 i. Sometimes is easier to calculate expectation of \(X(X - 1) \) if factorial is in denominator.
 ii. Or \(X(X + 1) \) if factorial is in numerator.
 c. Moment and Probability Generating Function
 \(E(e^{tx}) \) and \(E(e^{x^2}) \)

4. The density is the derivative of the distribution function:
 a. \(f_X(x) = \frac{d}{dx} F_X(x) \)
 i. These involve the expectation of a quantity raised to power \(X \)
 - \(t \) for probability generating function
 - \(\exp(t) \) for mgf
 ii. Most of the probability functions under consideration involve a quantity raised to the power \(x \)
 iii. Multiply these to get a single quantity raised to the power \(x \).
 iv. Recognize this as the probability function for a distribution of the same form with a different parameter.

WMS: 3.11

6. Probability Inequalities
 a. Markov Inequality: If \(P(X \geq 0) = 1 \), then for all \(t > 0 \), \(P(X \geq t) \leq E(X)/t \).
 i. Марков (Markoff)
 ii. Proof: Split sum according to whether \(x \) is at least as great as \(t \).
 \[E(X) = \sum_x x p_X(x) = \sum_{x < t} x p_X(x) + \sum_{x \geq t} x p_X(x) \]
 - Part with lower values is positive, by positivity; throw it away.
 \[E(X) \geq \sum_{x \geq t} x p_X(x) \]
 - Bound sum below by lower bound on \(x \):
 \[E(X) \geq \sum_{x \geq t} \frac{1}{t} p_X(x) \]
 - Factor out \(t \): \(E(X)/t \geq \sum_{x \geq t} p_X(x) \).
 b. Tchebycheff Inequality:
 \[P \left((X - E(X))^2 \geq t \right) \leq V(X)/t \]
 - as can be seen by applying Markov’s inequality to \((X - E(X))^2 \).
 i. Чебышёв (Chebycheff, Chebychov, Chebyshov; or Tchebychev, Tchebycheff (French transcriptions); or Tschebyschev, Tschebyschef, Tschebyscheff (German transcriptions); Čebyčev. (from Wikipedia).

We can use Tchebycheff inequality to show \(V(X) = 0 \) if and only if there exists \(c \) such that \(P(X = c) = 1 \).
 i. Suppose \(P(X = c) = 1 \).
 - Then \(E(X) = c \).
 - Also \(V(X) = \sum_{x \neq c} (x - c)^2 p_X(x) = 0 \).
 ii. Suppose \(V(X) = 0 \).
 - By Tchebycheff inequality,
 \[P \left(|X - E(X)| \geq t \right) \leq V(X)/t^2 = 0 \]
 for all \(t > 0 \).
 - Let \(A = \{X \neq E(X)\} = \{|X - E(X)| > 0\} \)
 - Let \(A_n = \{|X - E(X)| > 1/n\} \).
 - Then \(A = \bigcup_{n=1}^{\infty} A_n \).
 - Then \(P(A) \leq \sum_{n=1}^{\infty} P(A_n) = 0 \).

WMS: 4.1

IV. Continuous Distributions

A. Introduction to Continuous Distributions
 1. Definition and Examples
 a. Recall distribution function \(F_X(x) = P(X \leq x) \).
 b. A continuous distri is one in which the distribution function is given an integral \(F_X(x) = \int_{-\infty}^{x} f_X(y) \, dy \).
 i. To calculate the probability associated with a particular range of values, integrate a function called
 a probability density function
 over the range.
 c. Such a variable could take on any value in a range of real numbers.
 d. Examples

WMS: 4.2

4. The density is the derivative of the distribution function.
 a. \(dF_X(x_1)/dx_1 = f_X(x_1) \), if \(f_X \) is continuous at \(x_1 \).
 i. Take:

WMS: 85 Lecture 9 86 Lecture 9 87 Lecture 9 88
• $x_2 > x_1$
• and if x_2 is close to x_1,
ii. Then
 • $F_X(x_2) - F_X(x_1) = P(x_1 < X \leq x_2) = \int_{x_1}^{x_2} f_X(y) \, dy \approx (x_2 - x_1) f_X(x_1)$
 • Hence $(F_X(x_2) - F_X(x_1))/(x_2 - x_1) \approx f_X(x_1)$
 • Hence $dF_X(x_1)/dx_1 = f_X(x_1)$: Fundamental theorem of calculus.

b. Uniform Example:
 i. $f_X(x) = 1$ for $x \in (0, 1)$, and equal 0 elsewhere.
 • Called “Uniform on $(0, 1)$”.
 ii. Then

 $F_X(x) = \begin{cases}
 0 & \text{if } x \leq 0 \\
 x & \text{if } x \in (0, 1) \\
 1 & \text{if } x \geq 1
 \end{cases}$

 iii. Then

 $F_X'(x) = \begin{cases}
 0 & \text{if } x < 0 \\
 1 & \text{if } 1 \in (0, 1) \\
 0 & \text{if } x > 1 \\
 \text{undefined} & \text{if } x \in \{0, 1\}
 \end{cases}$