3. Derivative factor adjusts for local concentrating and diluting.
 a. See Fig. 24.

 Fig. 24: Transformation from Normal Using Square Root

 y
 x
 Transformation
 X density
 Y density

4. Simplest transformation example
 a. If \(r(x) = cx \) for some constant \(c \)
 i. (as when the new measure is the old measure on a new scale)

5. Argument requires that \(dr^{-1}(y)/dy \) exists on \(Y \).
 a. \(\frac{dr^{-1}}{dy}y^{-1}(y) = 1/r(r^{-1}(y)) \).
 i. By differentiating \(r(r^{-1}(y)) = y \) gives
 \(r'(r^{-1}(y)) \cdot \frac{dr^{-1}}{dy}y^{-1}(y) = 1 \).
 b. A transformation of a continuous variable can have a discrete distribution:
 i. \(X \) is uniform on \((0, 1)\) (i.e., the probability density function is 1 throughout this region) and \(r(x) = 0 \).
 ii. \(Y \) is now discrete, taking only the value \(0 \),
 iii. the arguments above break down because although the derivative of \(r \) exists, it is zero everywhere, and hence the derivative of \(r^{-1} \) exists nowhere.

6. Argument extends to some cases when \(r \) has a flat spot:
 a. Requires some more care.
 b. Example:
 i. \(X \) uniform on \((0, 1)\) and \(r(x) = (x - .5)^3 \). See Fig. 25.
 ii. Then \(r'(x) = 3(x - .5)^2 \)
 iii. Then \(r^{-1}(y) = y^{1/3} + .5 \) and its derivative is \(\frac{1}{3}y^{-2/3} \).
 iv. The probability density function over the domain \((-5^{1/3}, 5^{1/3})\) is \(1/(3(3^{1/3} + .5 - .5)^2) = \frac{1}{3}y^{-2/3} \).

 Lecture 11

 Fig. 25: Transformation \((x - 1/2)^3\)

 - The probability density function is defined everywhere on the domain except at zero.
 7. Case with transformation both increasing and decreasing:
 a. Domain \(\mathcal{X} \) of \(X \) splits into disjoint subsets \(\mathcal{X}_j \).
 b. \(r \) monotonic on each of \(\mathcal{X}_j \).
 i. monotonic means either non-increasing, or non-decreasing.
 c. \(f_Y(y) = \sum_{x \in r^{-1}(\{y\})} f_X(x)/r'(x) \).
 d. Example:

 Lecture 11

 107 Lecture 11

 i. \(X \) has probability density function \(f_X(x) \) equalling 1 on \((-1/2, 1/2)\), 0 elsewhere
 • Transformation \(Y = r(X) \) for \(r(x) = x^2 \)
 ▷ non-increasing on \(\mathcal{X}_1 = (-\frac{1}{2}, 0) \), and
 ▷ non-decreasing on \(\mathcal{X}_2 = (0, \frac{1}{2}) \).
 • \(r^{-1}(y) = \sqrt{|y|} \)
 • \(\frac{dr^{-1}}{dy}y^{-1}(y) = \text{sgn}(y) \cdot \frac{1}{2}y^{-1/2} \).
 • \(\text{sgn}(y) = \begin{cases} 1 & \text{if } y > 0 \\ -1 & \text{if } y < 0 \\ 0 & \text{if } y = 0 \end{cases} \)
 • \(f_Y(y) = | -1/(2\sqrt{y}) | + | 1/(2\sqrt{y}) | = y^{-1/2} \) for \(0 < y \leq 1/4 \), and 0 otherwise.
 ii. Note that formula fails at \(y = 0 \). See Fig. 26.
 • Remember from Riemann integration discussion that value of probability density function at one point doesn’t matter.
 iii. The probability density function diverges to \(\infty \) as \(y \to 0 \).
 iv. Integrals representing probabilities of sets like \((0, b)\) or \([0, b)\) are improper.
 v. Improper integrals are evaluated as limits of well-defined integrals:
 • \(P(Y \leq 1/8) = \int_0^{1/8} y^{-1/2} \, dy \)
 • Integral up to point where probability density function is infinite is taken as limit
 \(\lim_{a \to 0, a > 0} \int_a^{1/8} y^{-1/2} \, dy = \int_a^{1/8} 2y^{1/2} \, dy \bigg|_a^{1/8} = \)
Density

\[\lim_{a \to 0, a > 0} \sqrt{\frac{1}{2} - 2\sqrt{a}} = \sqrt{\frac{1}{2}}. \]

8. Probability density function may diverge to \(\infty \) in middle.
 a. \(X \) has probability density function \(f_X(x) \) equalling 1 on \((-1/2, 1/2)\), 0 elsewhere
 b. Transformation \(Y = r(X) \) for \(r(x) = \text{sgn}(x)x^2 \)
 i. \(r^{-1}(y) = \text{sgn}(y)\sqrt{|y|} \)
 ii. \(\frac{dy}{dx}r^{-1}(y) = \frac{3}{2}|y|^{-1/2} \)
 iii. \(f_Y(y) = 1/(2\sqrt{|y|}) \) for \(|y| \leq 1/2\), and 0 otherwise. See Fig 27.
 iv. Formula still fails at \(y = 0 \).

Lecture 11

b. Don’t define expectation if \(\int_X |x| f_X(x) \, dx = \infty \).
2. Expectation of transformation of a random variable defined as before
 a. Want \(E(r(X)) \) for some random variable \(X \) taking values in \(X' \).
 b. Transform to new variable \(Y = r(X) \) taking values in \(Y' \).
 c. Calculate its probability density function \(f_Y(y) \)
 d. Report \(E(Y) = \int_{Y'} yf_Y(y) \, dy \).
 e. Can calculate expectation of transformation without constructing new density:
 \(E(r(X)) = \int_X r(x)f_X(x) \, dx \).
 i. As before, \(f_Y(y) = \left| \frac{dy}{dx} \right| f_X(r^{-1}(y)) \)
 ii. \(\int_Y yf_X(r^{-1}(y)) \frac{dy}{dx} \, dy = \int_X r(x)f_X(x) \, dx \)
3. Definition of typical value
 a. Expectation
 i. Advantage: explicitly and uniquely defined.
 ii. Disadvantage: Sometimes isn’t defined.
 b. Median
 i. Advantage: Always defined.
 ii. Disadvantage: Sometimes not unique.
4. Linearity
 a. Let \(Y = aX + b \) for some constants \(a \), \(b \)
 b. Then \(E(Y) = aE(X) + b \).
 i. Use summation and constant multiple rules for integration:

\[\text{E}(Y) = \int_X (ax + b)f_X(x) \, dx \]
\[= a \int_X x f_X(x) \, dx + b \int_X f_X(x) \, dx = aE(X) + b \]

5. Other moments as before:
 a. The \(r \)-th moment is defined as \(E(X^r) \).
 b. The \(r \)-th central moment is defined as \(E((X - E(X))^r) \).
6. Describing spread via Variance:
 a. \(V(X) \) is the second central moment: average squared distance from mean.
 b. Alternate formulation:
 \(V(X) = E(X^2) - E(X)^2 \).
 c. Standard deviation: typical distance from expectation:
 \(\text{SD}(X) = \sqrt{V(X)} \)
 d. Linearity:
 \(V(aX + b) = E((aX + b - E(aX + b))^2) \)
 = \(E((aX + b - E(aX) - b)^2) \)
 = \(E(a^2(X - E(X))^2) \)
 = \(a^2V(X) \)
 i. Hence \(\text{SD}(aX + b) = |a| \text{SD}(X) \)
WMS: 4.4
E. Particular Distributions
1. Uniform distribution
 a. In symbols, \(X \sim \text{Unif}(a, b) \).
b. probability density function
\[f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases} \]

c. distribution function
\[F_X(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } x \in [a, b] \\ 1 & \text{if } x > b \end{cases} \]

i. See Fig. 28.

![Fig. 28: Unif(a, b) Distribution](image)

Vertical scale on two panels is not the same.

d. Expectation \(E(X) = \frac{(a + b)}{2} \).

i. \(E(X) = \int_a^b \frac{x}{b-a} \, dx = \frac{(b^2/2 - a^2/2)}{(b-a)} = \frac{(a+b)}{2} \).

ii. We could have seen this through symmetry.

iii. Median is the same.

e. Variance: \(V(X) = \frac{(b-a)^2}{12} \).

i. \(E(X^2) = \int_a^b \frac{x^2}{b-a} \, dx = \frac{(b^3/3 - a^3/3)}{(b-a)} = \frac{(a^2 + ab + b^2)}{3} \).

ii. \(V(X) = \frac{(a^2 + ab + b^2)}{3} - \frac{(a^2 + 2ab + b^2)}{4} = \frac{(a^2 - 2ab + b^2)}{12} = \frac{(b-a)^2}{12} \).

f. R gives probabilities via \text{punif}, but this is hardly necessary.