b. Examples:
 i. Binomial Distribution.
 • Rival Unbiased Estimators of π:
 ▷ Suppose $X \sim \text{Bin}(n, \pi)$ and $Y \sim \text{Bin}(m, \pi)$.
 ▷ Let $\delta_1(X, Y) = X/n$ and $\delta_2(X, Y) = (X + Y)/(m + n)$.
 ▷ By not using some information, δ_1 throws
 away information. How is this mathematically
 quantified?
 ii. Estimating a general mean:
 • Consider two ind. measurements X_1 and X_2,
 with a common mean μ and variance σ^2.
 • Then $a_1X_1 + a_2X_2$ is unbiased if and only if
 $a_1 + a_2 = 1$.
 • The variance is $(a_1^2 + a_2^2)\sigma^2$,
 which is minimized when $a_1 = a_2 = \frac{1}{2}$.
 • Relative efficiency of the variance minimizing
 estimator to the general estimator is $2(a_1^2 + a_2^2)$.
 iii. Poisson variable.
 • Mean and variance of a $\mathcal{P}(\mu)$ random variable are
 both μ;
 • hence an alternate estimator for
 μ might be the sample variance
 $\hat{\sigma}(X) = (n - 1)^{-1}(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2)$.
 • To see that this is unbiased, refer to discussion in
 book about generic variance.
 • It can be shown that $\text{Var}[\delta(X)] \approx \mu(1 + 2\mu)/n$.
 • sample mean is unbiased and has variance μ/n.
 • relative efficiency of the sample variance to the
 sample mean is approximately $\frac{\mu(1 + 2\mu)/n}{\mu/n} = 1 + 2\mu$.
 • Here relative efficiency depends on θ.
 ▷ This is a relatively simple case, in which one
 estimator is always better than the other;
 ▷ it need not be the case.
 F: 10.4

7. Consistency.
 a. Objective: Would like to know the maximum distance
 our estimator can possibly be from the true parameter
 value.
 i. In many cases, for instance in the case of normal
 means, the answer is easy: It could be any finite distance
 away.
 b. Realistic Objective: Can we claim that $\hat{\theta}$ lies within
 a certain (preferably small) distance from θ with a
 certain probability.
 i. As we saw with our efficiency and Cramér-Rao bound
 calculations, $\text{Var} \left(\frac{\hat{\theta}}{\bar{X}} \right)$ usually decreases as n
 increases.
 ii. Think of $\hat{\theta}$ as the family of estimators based on
 various sample sizes,
 c. Definition:

 i. In words, An estimator $\hat{\theta}$ is called consistent if
 • given
 ▷ any high probability of seeing $\hat{\theta}$ within a certain
 band, and
 ▷ any very small width for this band,
 • a large enough n ensures that the probability that
 $\hat{\theta}$ is within the required distance of the true value
 is as required.
 ii. $\forall C > 0$ and $\delta > 0 \exists M$ possibly depending on δ
 and C such that $\text{P} \left[\left| \hat{\theta} - \theta \right| \leq C \right] > 1 - \delta$
 for any $n > M$.
 d. Example:
 i. if $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$,
 • Estimate θ by $\hat{\theta}_n = \bar{X} \sim N(\mu, \sigma^2/n)$.
 • Then $(\hat{\theta}_n - \mu)/(\sigma/\sqrt{n}) \sim N(0,1)$.
 • Hence
 $\text{P} \left[\left| \hat{\theta}_n - \mu \right| \leq C \right] = \Phi \left(\frac{\sqrt{nC}}{\sigma} \right) - \Phi \left(-\frac{\sqrt{nC}}{\sigma} \right)$,
 ▷ where Φ is the c.d.f. of a $N(0,1)$ variable.
 • $\lim_{n \to \infty} \text{P} \left[\left| \hat{\theta}_n - \mu \right| \leq C \right] = 1$
 • Let $z_{\delta/2}$ satisfy $\Phi(z_{\delta/2}) = 1 - \delta/2$
 • For all n such that $\sqrt{nC}/\sigma > z_{\delta/2}$ we have
 $\text{P} \left[\left| \hat{\theta}_n - \theta \right| \leq C \right] > 1 - \delta$.
 e. A general rule
 i. Often hard: Usually the bounds on n are not so
 easily derived explicitly.
 ii. Use Chebyshev’s inequality: Relate the probability
 that a random variable T is farther than a distance
 C from its mean θ to its variance.
Densities from Cauchy distribution

\[
\text{Var}[T] = \sum_{t} (t-\theta)^2 p_T(t; \theta)
\]
\[
= \sum_{\{t|t-\theta<C\}} (t-\theta)^2 p_T(t; \theta) + \sum_{\{t|t-\theta\geq C\}} (t-\theta)^2 p_T(t; \theta)
\]
\[
\geq 0 + \sum_{\{t|t-\theta\geq C\}} (C)^2 p_T(t; \theta)
\]
\[
= C^2 \sum_{\{t|t-\theta\geq C\}} p_T(t; \theta)
\]
\[
= C^2 P[|T-\theta| \geq C].
\]
\[
P[|\hat{\theta} - \theta| \geq C] \leq \text{Var}[\hat{\theta}] / C^2.
\]
iii. Hence if \(E[\hat{\theta}] = \theta\) and \(\lim_{n \to \infty} \text{Var}[\hat{\theta}] = 0\), then \(\hat{\theta}\) is consistent.

iv. Examples
- If \(X \sim \text{Bin}(n, \theta)\), and \(\hat{\theta}_n = X/n\), then
 \[
 \text{Var}[\hat{\theta}] = \theta(1-\theta)/n.
 \]
 Then
 \[
 P[|\hat{\theta}_n - \theta| \geq C] \leq \theta(1-\theta)/(C^2n) \leq 1/(4C^2n).
 \]
- If \(X_1, \ldots, X_n \sim \mathcal{P}(\mu)\), \(\bar{X} \sim \bar{X}\)
 \[
 \text{Var}[\bar{X}] = \mu/n
 \]
- Applying Chebyshev’s inequality,
 \[
 P[|\bar{X} - \mu| \geq C] \leq \mu/(C^2n)\]
 proves consistency,
- the values of \(n\) making the RHS smaller than some limit \(\delta\) depend on \(\mu\).