2. Formal statement of problem:
 a. Given data X_1, \ldots, X_n from a model $X_i \sim \text{Bin}(m, \theta)$
 b. wish to test the hypothesis, called the null hypothesis, that θ takes on a value in some set, against the alternative hypothesis that θ is in some other set.

 i. Example: Confidence Interval for Log Odds
 1. $X \sim \text{Bin}(m, \theta)$
 2. Get confidence interval for $\psi = \log(\theta) - \log(1 - \theta)$
 3. Let $\hat{\psi} = \log(X/m) - \log(1 - X/m)$
 4. $\log(X/m) - \log(1 - X/m) \approx \log(\theta) - \log(1 - \theta) + (1/\theta + 1/(1 - \theta))(X/m - \theta)$
 v. Hence
 P \left[\hat{\psi} - \psi \leq y \right] \approx P \left[(1/\theta + 1/(1 - \theta))(X/m - \theta) \leq y \right] = P \left[(X/m - \theta) \leq y/(1/\theta + 1/(1 - \theta)) \right] = P \left[(X/m - \theta)/\sqrt{\theta(1-\theta)/m} \leq y\sqrt{m\theta(1-\theta)} \right] = P\left(z \leq y \right)
 vi. Hence $1 - \alpha$ confidence interval for ψ is $\hat{\psi} \pm \frac{z_{\alpha/2}}{mX/m(1-X/m)}$.
 vii. Size $F: 12.1$

3. What makes a good test? Among test of a fixed size:
 a. Why is the alternative of randomly rejecting the same probability, without regard to data, a bad test?
 b. Want the Type II error rate small, or alternatively, want the power, or probability of correct decision under the alternative.

4. General Construction
 a. Create a test statistic L that gives more evidence against H_0 the bigger it is,
 b. Rejecting H_0 if the statistic is equal to or larger than a threshold value, called the critical value.
 F: 12.2

g. Type I error rate called size.

5. Decision-Theoretic Approach
 a. Make loss function that depends on choice a_0, a_1, and truth θ_0, θ_1

6. Example: Binomial Case:
 a. Problem:
 i. $X \sim \text{Bin}(m, \pi)$
 ii. $H_0 : \pi = \pi_0 (= .65)$, $H_A : \pi > \pi_0$.
 iii. Type I error rate α
 b. Use as test statistic observed defective proportion Q
 i. Find the critical value c to make the test “Reject if $mQ = X \geq c$” have size α.
 ii. Equivalently, ask for the value of C such that under H_0, $P[Q \geq C] = \alpha$ for $C = c/m$.
iii. Via approximation, need C such that
\[P[Q \geq C] \approx \alpha. \]

- Since \((Q - \pi)/\sqrt{\pi(1-\pi)/m} \sim N(0, 1) \),
 \[P\left[(Q - \pi)/\sqrt{\pi(1-\pi)/m} \geq z_\alpha\right] \approx \alpha, \]
- and \(P\left[Q \geq \pi + z_\alpha \sqrt{\pi(1-\pi)/m}\right] \approx \alpha; \)
- hence \(\pi + z_\alpha \sqrt{\pi(1-\pi)/m} \) is the approximate critical value.