7. Solution using confidence intervals
 a. Null hypothesis θ_0 vs alternative that $\theta = \theta_1 > \theta_0$.
 b. Construct test
 i. Make a $1 - \alpha$ confidence interval
 • One-sided form $\{L(\text{data}), \infty\}$
 ii. Reject H_0 if θ_0 is outside the confidence interval; don’t reject otherwise
 iii. Type I error α.
 iv. Do the normal approximation confidence interval method and the normal approximation testing method give the same results?
 • confidence interval for binomial probability contains θ 95% of the time regardless of the value of θ.
 ▶ Hence standard error has θ replaced by estimate.
 • When testing, critical value depends only the distri-
 of the test statistic when θ takes null value.
 ▶ Hence we use null value rather than estimate in the standard error.
 \[F: 12.4 \]

C. Test construction via likelihood functions.
1. Construct a test using the likelihood function
 a. $L(\theta; X_1, \cdots, X_n)$ gave us a measure of how likely a particular θ value is.
 b. l.r.t. tells us:
 i. To test $H_0 : \theta = \theta_0$ vs $H_A : \theta = \theta_1$, use as the test statistic $T = L(\theta_1; X_1, \cdots, X_n)/L(\theta_0; X_1, \cdots, X_n)$
 ii. and reject when $T > c$.

Lecture 16

b. For $H_0 : \pi = A$ vs $H_A : \pi = B$,
 \[
 \begin{array}{cccc}
 t & P[\sum_i X_i = t; H_0] & P[\sum_i X_i = t; H_A] & \Lambda \\
 0 & 0.0060 & 0.0001 & 0.0173 \\
 1 & 0.0403 & 0.0016 & 0.0390 \\
 2 & 0.1209 & 0.0106 & 0.0878 \\
 3 & 0.2150 & 0.0425 & 0.1975 \\
 4 & 0.2508 & 0.1115 & 0.4444 \\
 5 & 0.2007 & 0.2007 & 1.0000 \\
 6 & 0.1115 & 0.2508 & 2.2500 \\
 7 & 0.0425 & 0.2150 & 5.0625 \\
 8 & 0.0106 & 0.1209 & 11.3906 \\
 9 & 0.0016 & 0.0403 & 25.6289 \\
 10 & 0.0001 & 0.0060 & 57.6650 \\
 \end{array}
 \]

3. Properties of l.r.t.s of size α:
 a. Among all tests that have type I error of size no more than α none have a smaller type II error than this test.
 b. Equivalently, among all tests that have type I error of size no more than α none have greater power, and so this is the most powerful test for these hypotheses.
 c. This result is called the Neyman-Pearson Lemma.
 Proof:
 i. Suppose
 • test “Reject if $X \in A \cup B$” is l.r.t., with size α,
 and
 • “Reject if $X \in A \cup C$” is competitor, with size $\leq \alpha$.
 ii. Know $P[X \in A \cup C; H_0] \leq P[X \in \{A \cup C \cup B\}; H_0]$
 $\Rightarrow P[X \in C; H_0] \leq P[X \in A \cup C; H_0]$, \Rightarrow \[
 \int_C f(x; \theta_0) \, dx \leq \int_B f(x; \theta_0) \, dx
 \]
 i. we have simple null and simple alternative hypotheses.

2. Examples:
 a. Consider the car example of before, and test the null hypothesis $H_0 : \pi = \pi_0$ vs the alternative $H_A : \pi = \pi_1$.
 i. The likelihood ratio is
 \[T = \frac{\prod_{j=1}^n \pi_1^{X_j} (1 - \pi_1)^{m - X_j}}{\prod_{j=1}^n \pi_0^{X_j} (1 - \pi_0)^{m - X_j}} \]
 ii. Simplifying,
 \[T = \frac{\sum_{j=1}^n X_j (1 - \pi_1)^m}{\sum_{j=1}^n X_j (1 - \pi_0)^m} \]
 \[= \frac{\pi_1 (1 - \pi_0)}{\pi_0 (1 - \pi_1)} \sum_{j=1}^n X_j \frac{(1 - \pi_1)^m}{(1 - \pi_0)} . \]
 iii. Since
 \[\frac{\pi_1 (1 - \pi_0)}{\pi_0 (1 - \pi_1)} > 1 \]
 T is large when $\sum_{j=1}^n X_j$ is large and small otherwise.
 ▶ Hence this again gives a test that says: Reject H_0 if $\sum_{j=1}^n X_j \geq c$ (or reject if $Q > c$, for a different c.)