c. Case when $\pi_1 < \pi_0$?
 i. The test will now be of the form: Reject when $X \leq c$.
 ii. The same reasoning tells us that the c.r. has the same form regardless of which π_1 we consider.
 iii. Hence the test: Reject when $Q \leq c$ is uniformly most powerful for testing $H_0 : \pi = \pi_0$ vs. $H_A : \pi < \pi_0$.
 iv. Example: $X_1, \ldots, X_n \sim N(\mu, 1)$, independent
 - Test $H_0 : \mu = 0$ vs. $H_A : \mu = \mu_A$ for $\mu_A > 0$
 - Then
 \[
 \Lambda = \frac{\prod_{j=1}^n \exp(-X_j - \mu_A)^2/2}/\sqrt{2\pi} \\
 = \prod_{j=1}^n \exp(-X_j^2/2 + \mu_A X_j - n\mu_A^2/2) \\
 = \prod_{j=1}^n \exp(\mu_A X_j - n\mu_A^2/2) \\
 = \exp(\mu_A \sum_{j=1}^n X_j - n\mu_A^2/2) \\
 = \exp(n\mu_A \bar{X} - n\mu_A^2/2)
 \]
 - Hence reject H_0 if \bar{X} large.
 - Critical value is z_{α}/\sqrt{n}.
 - Compare with test based on median
 - Expectation still μ
 - By Theorem 8.17, Variance

$\approx \phi(0)^{-2}/4(n-1) = \pi/(2(n-1))$

Sampling distribution approximately normal

Critical value $z_{\alpha}/\sqrt{\pi/(2(n-1))}$