11. Inference about two normal variances:
 a. \(X_1, \ldots, X_m \sim N(\mu, \sigma^2) \) \(Y_1, \ldots, Y_n \sim N(\nu, \tau^2) \)
 i. \(H_0 : \sigma = \tau \) vs. \(H_A : \sigma \neq \tau \)
 b. \(\hat{\mu} = \bar{X}, \; \hat{\nu} = \bar{Y} \)
 c. \(\hat{\sigma} = \sqrt{\frac{1}{m} \sum_{j=1}^{m} (X_j - \bar{X})^2} \),
 \(\hat{\tau} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (Y_j - \bar{Y})^2} \), \(\hat{\sigma} = \hat{\tau} = \sqrt{\frac{1}{m+n} \left(\sum_{j=1}^{m} (X_j - \bar{X})^2 + \sum_{j=1}^{n} (Y_j - \bar{Y})^2 \right)} \)
 \(m+n \) = \(\sqrt{\frac{\gamma \sigma^2 + (1 - \gamma) \tau^2}{\hat{\sigma}^2}} \) for \(\gamma = \frac{m}{m+n} \)
 d. Likelihood ratio statistic is
 \[\Lambda = \frac{\exp \left(-\sum_{j=1}^{m} (X_j - \bar{X})^2 \right) \frac{1}{2 \sigma^2} - \sum_{j=1}^{n} (Y_j - \bar{Y})^2 \frac{1}{2 \tau^2} \hat{\sigma} - m \hat{\tau} - n}{\exp \left(-\frac{m+n}{2} \right) \frac{1}{\hat{\sigma} - m \hat{\tau} - n}} \]
 e. When \(m = n, \Lambda = \left(\frac{1}{\hat{\sigma}} \hat{\tau} + \frac{\hat{\tau}}{\hat{\sigma}} \right)^{-\left(m+n\right)/2} \)
 i. Hence reject \(H_0 \) if \(\hat{\sigma}^2 / \hat{\tau}^2 > c \) or \(\hat{\tau}^2 / \hat{\sigma}^2 > c \)
 ii. \(\hat{\tau}^2 / \hat{\sigma}^2 \sim \chi^2_{m-1, m-1} \)
 f. When \(m \neq n \), not exactly right
 F: 13.8

12. Multinomial Inference
 a. Extension of Binomial:
 i. Draw \(m \) items that are either successes or failures.

 \[P \left[X = x; \pi \right] = \sum_{y \text{ yielding } x} P \left[Y = y; \pi \right] \]

 \[= \prod_{i=1}^{J} \pi_i^{x_i} \times \text{# of } y \text{ associated with } x \]

 \[= \prod_{i=1}^{J} \pi_i^{x_i} \times \text{# of ways to get } x_1 \times \]

 \# of ways to get \(x_2 \) from remaining \(m - x_1 \times \ldots \)

 \# of ways to get \(x_J \) from remaining \(m - x_1 - \ldots - x_{J-1} \)

 \[= \prod_{i=1}^{J} \pi_i^{x_i} \left(\frac{m!}{x_1! (m-x_1)!} \frac{m-x_1}{x_2! (m-x_1-x_2)!} \ldots \right) \]

 \[\frac{m-x_1-\ldots-x_{J-1}}{x_J! (m-x_1-\ldots-x_{J-1})!} \]

 \[= \prod_{i=1}^{J} \pi_i^{x_i} \frac{m!}{x_1! x_2! \cdots x_J!} \]

d. Properties:
 i. \(X_j \sim \text{Bin}(m, \pi_j) \) but NOT ind.
 ii. \(E X_j = \pi_j, \text{Var} X_j = \pi_j (1 - \pi_j) \)

e. Estimation:
 i. m.l.e.s:

 - Successes have probability \(\pi \)
 - Failures have probability \(1 - \pi \)

ii. Record total \# of successes.

b. Multinomial Distribution Definition:
 i. Draw \(m \) items that fall into one of \(J \) groups.
 - Group \(j \) has probability \(\pi_j \)
 - Hence \(\sum_j \pi_j = 1 \)

 ii. Record:
 - Raw data \(Y_1, \ldots, Y_m \), where each \(Y_j \in \{1, \ldots, J\} \)
 - Sufficient reduction \(X_1, \ldots, X_J \) the \#s of successes in each group.
 - Hence \(\sum_j X_j = m \)

c. Multivariate p.m.f.:
 i. for raw data: \(P \left[Y = y; \pi \right] = \prod_{j=1}^{m} \pi_{Y_j} = \prod_{j=1}^{J} \pi_j^{X_j} \)
 ii. for reduced data:

 \[l(\pi; X) = \sum_j X_j \log(\pi_j) \]

 - Consider \(\pi_j = 1 - \pi_1 - \cdots - \pi_{J-1} \)
 - Setting \(x = 0 \), get \(X_j / \pi_j - X_j / \pi_j = 0 \)
 - Guess that m.o.m.e solutions are solutions, and find that this is indeed the case.
 - Note that if \(\hat{\pi}_j \neq 0 \) then \(l(\pi; X) \to -\infty \) as \(\pi_j \to 0 \Rightarrow \pi \) is maximizer.

f. Testing:
 i. \(-2 \log(A) = \sum_j X_j \left(\log(X_j/m) - \log(\hat{\pi}_j) \right) \approx \sum_j (X_j - m \hat{\pi}_j)^2 / (m \hat{\pi}_j) \)
 ii. Approximation comes from Talor series approximation to \(f(x) = x \log(x/m) - \log(\hat{\pi}) \) about \(m \hat{\pi} \)
 \[f(m \hat{\pi}) = 0; \; f'(x) = x [\log(x/m) + \log(\hat{\pi}) - \log(\hat{\pi})] \] and \(f''(m \hat{\pi}) = 1; \; f''(x) = 1/x \.
 \[f(x) \approx (x - m \hat{\pi}) + (x - m \hat{\pi})^2 / (2m \hat{\pi}) \]
 - \(-2 \log(A) \approx \sum_j [2(X_j - m \hat{\pi}_j) + (X_j - m \hat{\pi}_j)^2 / (m \hat{\pi}_j)] = \sum_j (X_j - m \hat{\pi}_j)^2 / (m \hat{\pi}_j) \)
 - Approximation is Pearson’s \(\chi^2 \) test
 iii. Application: goodness of fit testing