5. Measuring the Strength of a Relationship

a. Recall that the F test tested whether any of the regression parameters are non-zero.
b. Recall that for one parameter, R^2 measured the strength rather than tested for the strength.
c. Do this for more explanatory variables:

\[R^2 = \frac{SS_R}{SS_t} = 1 - \frac{SS_{Res}}{SS_t} \]

i. \(SS_{Res} = \sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2 \)
ii. \(SS_R = \sum_{i=1}^{n}(\hat{Y}_i - \bar{Y})^2 \)
iii. \(SS_t = \sum_{i=1}^{n}(Y_i - \bar{Y})^2 \)
d. \(R^2 \in [0, 1] \), represents the proportion of variability explained by explanatory variables.
e. Any additional variable will result in R^2 no smaller.
 i. Almost all will result in R^2 somewhat larger, even if variable is probabilistically unrelated.
 ii. Adjust R^2 to penalize it for larger numbers of parameters:
 - \(R^2_{Adj} = 1 - \frac{(SS_{Res} / (n - p)) / (SS_t / (n - 1))}{1 - (SS_{Res} / SS_t)((n - 1) / (n - p))} \)
 - \((n - 1) / (n - p) \approx 1 \) if n large and p small.
 - \(R^2_{Adj} \) drops if SS_{Res} fixed and p increases.

6. Confidence Regions for Parameters

a. Recall that confidence intervals were found by determining set of univariate null hypotheses that were not rejected
 i. Constructed so that probability of incorrect rejection is α for variables one at a time.

- If x is a covariate pattern in the data set, this is the diagonal element of the hat matrix, times σ^2.

- Prediction is unbiased estimator of $x\beta$

d. When observations are normally distributed, prediction is also normally distributed.
e. So level $1 - \alpha$ CI for $x\beta$ is

\[x\beta \pm z_{\alpha/2}\sigma\sqrt{\text{Var}(\hat{X}^\top X)^{-1}x} = x\beta \pm z_{\alpha/2}\sigma\sqrt{1/n + x^\top (\hat{X}^\top \hat{X})^{-1}x}. \]

i. x^* is vector of covariates with intercept part removed and average subtracted off.

ii. In the more-common case of σ unknown, level $1 - \alpha$ confidence interval for $x\beta$ is

\[x\hat{\beta} \pm t_{n-k, \alpha/2}\sqrt{x^\top (\hat{X}^\top X)^{-1}x}. \]

f. Prediction interval is available as in the one-explanatory-variable case.

i. Level $1 - \alpha$ confidence interval for $x\beta$ is

\[x\hat{\beta} \pm t_{n-k, \alpha/2}\sqrt{1 + x^\top (\hat{X}^\top \hat{X})^{-1}x}. \]

MPV: 3.8
g. Hidden extrapolation:
 i. Predict response at a set of explanatory variables separately typical
 ii. an outlier in a bivariate sense.
 iii. Distance from center of data set may be indicated by diagonal element of hat matrix.

MPV: 3.11

8. Adding extra explanatory variables can change the sign of other variables?

- Neither tests nor intervals had type I error/coverage controlled for sets of variables.
- That is, with two explanatory variables,
 \[P(\beta_1 \in I_1) = P(\beta_2 \in I_2) = 1 - \alpha, \]
 but
 \[P(\beta_1 \in I_1 \text{ and } \beta_2 \in I_2) < 1 - \alpha. \]
- Also, \(P_{\beta_1^0, \beta_2^0} [H_0 : \beta_1 = \beta_2 = 0 \text{ not rejected}] = P_{\beta_2^0} [H_0 : \beta_2 = 0 \text{ not rejected}] = 1 - \alpha, \)
 but \(P_{\beta_1^0, \beta_2^0} [\text{Neither null hypothesis rejected}] < 1 - \alpha. \)
b. F procedure tests for multiple included parameters simultaneously.
 i. Confidence region is the set of null hypotheses not rejected.
 - γ is set of m parameters you want to bound
 - W is the corresponding submatrix of $X^\top X^{-1}$
 - $R = \{ \gamma | (\gamma - \gamma)^\top W^{-1}(\gamma - \gamma) \leq \hat{\sigma}^2 F_{m, n-k, \alpha/2} \}$, an ellipse.

MPV: 3.5

7. Confidence Intervals for Fitted Values

a. Predict and bound the fitted value for explanatory variables $1, x_1, \ldots, x_{k-1}$.

i. Represent this as a row vector x.
b. Prediction is

\[\hat{Y}(x) = x\beta = \sum_{j=0}^{k-1} \beta_j x_j \]

i. $\text{Var} \left[\hat{Y}(x) \right] = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} x_i x_j m_{ij} \sigma^2$
 - for m_{ij} the entry in row i and column j of $(X^\top X)^{-1}$
ii. Can be written as $x^\top (X^\top X)^{-1}x \sigma^2$

a. Adding a covariate may remove or change the direction of an effect.
 i. Categorical response and two categorical explanatory variables: Simpson’s paradox

b. Adding a baseline value is not the same as looking at a change score
 i. Continuous response and one categorical explanatory variables and one continuous variable: Lord’s paradox
 ii. Effect of the categorical variable is generally attenuated, because of regression to the mean.

E. Linear Algebra Concepts

1. An ordered list of observations called a vector.
 a. With n entries, call it an n vector.
 b. Describe it by giving value for entry in place j, for each j

2. A grid of observations, with entries in each row and column, is called a matrix.
 a. Describe by generic entry in row i and column j
 b. With n rows and k columns called a $n \times k$ matrix
 i. This is not really multiplication: here if $n = 10$ and $k = 3$, read this as “10 by 1” and not “30”.

3. Juxtaposition of a matrix X and vector β represents matrix multiplication
 a. Defined only if X has as many columns (that is, second dimension) as β has entries.
 b. That is, if $X \beta$, then is the vector
 i. with as many components as X has rows
 i. Value in slot i is $\sum_j x_{ij} \beta_j$
Lecture 5

F. Model Checking

1. Recall Regression Assumptions
 a. Response expectation is approximately linearly in explanatory variables.
 i. To make this sensible, the center of the error distribution needs to be zero.
 ii. For prediction purposes, this assumption is quite important.
 iii. For testing purposes, this is less important.
 b. Errors are uncorrelated
 i. A moderate correlation can make standard errors misleading.

 c. So define the matrix product AB to be the matrix with entry $c_{ij} = \sum a_{il}b_{lj}$ in row l column j.
 d. Defined only if number of rows of B is the number of columns of A.
 e. Result has number of rows of first matrix and number of columns of second matrix.
 f. The definition of multiplication of a matrix and a vector is a special case, if the vector is viewed as having one column.
 g. Same argument shows matrix multiplication is associative: $A(BC) = (AB)C$.

2. Check via residual plot.
 a. Plot vs. fitted value
 b. Or vs. separate covariates.
 c. Expect residuals
 i. exhibit no pattern,
 ii. Be approximately evenly spread out

 2. Check via residual plot.
 a. Plot vs. fitted value
 b. Or vs. separate covariates.
 c. Expect residuals
 i. exhibit no pattern,
 ii. Be approximately evenly spread out

Lecture 5

4. + is vector addition:
 a. need both sides to have same number of components
 b. Result is component-wise sum.

5. A matrix like X with rows and columns interchanged is called the transpose of X
 a. $(AB)^T = B^TA^T$.
 b. Denote by X^T

6. Just as with scalars, matrix multiplication is distributive:
 $A(b - c) = Ab + Ac$ if b and c both have as many components as A has columns.

7. Sequential multiplications of the vector can be expressed as a matrix.
 a. Formulate more generally: Find C so that $A(B\beta) = C\beta$
 i. Let A have entries in row i and column j a_{ij}
 ii. Let B have entries in row i and column j b_{ij}
 iii. Recall that entry i in $B\beta$ is $\sum b_{ij}\beta_j$
 iv. Then entry l in $A(B\beta)$ is $\sum_i a_{il}\sum_j b_{ij}\beta_j$
 v. Rearrange terms in sum to do summation over i for $j = 1$ first, then summation over i for $j = 2$, then ...
 vi. $\sum_i (\sum_j a_{ij}b_{lj})\beta_j$: Commutative property of addition
 vii. Factor out β_j from multiple terms that contain it: $\sum_j (\sum_i a_{ij}b_{lj})\beta_j$: Distributive Property
 b. Result is $\sum_j c_{ij}\beta_j$ for $c_{ij} = \sum_i a_{il}b_{lj}$

 c. So define the matrix product AB to be the matrix with entry $c_{ij} = \sum_i a_{il}b_{lj}$ in row l column j.

Lecture 5

• sum of elements in row i of the matrix times corresponding elements of vector.

• if B is a $n \times m$ matrix, and if I is a $n \times n$ identity matrix, then $IB = B$.
• if B is a $n \times m$ matrix, and if I is a $m \times m$ identity matrix, then $BI = B$.
iv. So I want to find $CA = I$ (if it exists).
 • Such a matrix C is called the matrix inverse: $C = A^{-1}$.
 • A matrix without such an inverse is called singular
 v. Whether this matrix exists, and its value in this case, is usually straight-forward to compute.
 • We will leave these details to the numerical linear algebrists.

10. Other definitions
 a. A matrix that is its own square is called idempotent.

 MPV: 4.1