• If we now also want to estimate $\hat{\sigma}$ at the same
time, we want that pair $(\hat{\mu}, \hat{\sigma})$ that maximizes L.
• With $\mu = \bar{X}$, which σ maximizes L?
 Setting $\frac{\partial}{\partial \sigma} \hat{\sigma} = 0$,
 $-\sum_{j=1}^{n} (\frac{1}{2}(X_j - \bar{X})^2\hat{\sigma}^{-3} \times -2 - n/\hat{\sigma} = 0$, or
 $\hat{\sigma} = \sqrt{\sum_{j=1}^{n} (X_j - \bar{X})^2/n}$.
iii. Exponential:
 • $f(\lambda; X) = -\lambda X + \ln(\lambda) \Rightarrow$ likelihood
 arising from an ind. sample X_1, \cdots, X_n is
 $l(\lambda; X_1, \cdots, X_n) = -\lambda \sum_{j=1}^{n} X_j + n \ln(\lambda)$.
 • Setting the first derivative $= 0$,
 $-\sum_{j=1}^{n} X_j + n/\lambda = 0$, or
 $\hat{\lambda} = 1/(\sum_{j=1}^{n} X_j/n) = 1/\bar{X}$.
 • Do we have a maximum?
 $l''(\lambda; X_1, \cdots, X_n) = -n/\lambda^2$; always negative, and
 so $\hat{\lambda}$ is a global maximizer.
 • Recall that this is not an unbiased estimator; in
 fact, its expectation is infinite.
 • mean is $\mu = 1/\lambda$
 > Similar calculations say $\hat{\mu} = \bar{X}$.
iv. Harder m.l.e. example: Cauchy distr.
 Take $X_1, \cdots, X_n \sim$ Cauchy μ;
 $l(\mu, X_1, \cdots, X_n) = -\sum_{j=1}^{n} \log(1 + (X_j - \mu)^2)$.
 • Likelihood equation is
 $-\sum_{j=1}^{n} \frac{\mu - X_j}{1 + (X_j - \mu)^2} = 0$.
 • See Fig. 6.
v. Uniform Example:
 • Invariance property: If $\tau = g(\theta)$, for g onto, then
 $\hat{\tau} = g(\hat{\theta})$.
 • Often easier to consider this function’s log $l(\theta)$.
 i. θ shows up in the exponents of the normal,
 exponential, and Poisson dists, and
 ii. In the above-mentioned dists, and in the binomial
 distribution, for any value of X, $L(\theta) > 0 \forall \theta$
 (sound familiar)?
g. Relaxed definition:
 i. Since the log likelihood is concerned with relative
 comparisons of potential parameter values, we can
 eliminate any terms not containing θ.
 ii. Hence we’ll also call a log-likelihood function to be
 that defined above, plus any function of the data
 not containing θ.
WMS: 9.4

N. Sufficiency: How much of information do we have to
consider, and how much can we toss away as not giving
information about the quantity of interest?
1. Example:
 a. $X_1, \cdots, X_n \sim$ Bin(m, θ) an ind. sample.
 \begin{itemize}
 \item $X_1, \cdots, X_n \sim \mathcal{U}[0, \theta]$.
 \item Product of densities is
 $$\prod_{i=1}^{n} \begin{cases} 1/\theta & \text{if } X_i \leq \theta \\ 0 & \text{otherwise} \end{cases} \prod_{i=1}^{n} \begin{cases} 1/\theta & \text{if } \theta \geq X_i \\ 0 & \text{otherwise} \end{cases}$$
 \end{itemize}
 e. Hence the joint p.m.f. is
 $$p_{X_1, \cdots, X_n}(x_1, \cdots, x_n; \tau) = \prod_{i=1}^{n} \begin{cases} m \pi^{x_i}(1-\pi)^{m-x_i} & \text{if } \tau = \theta \\ 0 & \text{otherwise} \end{cases} \prod_{i=1}^{n} \begin{cases} m \pi^{x_i}(1-\pi)^{m-x_i} & \text{if } \tau = \theta \\ 0 & \text{otherwise} \end{cases}$$

 \begin{align*}
 p(\hat{\mu}, \hat{\sigma}) &= \left(\frac{m}{n} \right) \pi^{\hat{\mu}} (1-\pi)^{m-n\hat{\sigma}}; \\
 \end{align*}

 Hence
 $$p_{X_1, \cdots, X_n}(x_1, \cdots, x_n; \hat{\theta}; \pi) = \prod_{i=1}^{n} \left(\frac{m}{\sum_{i}^{n} x_i} \right).$$

 Hence the additional information given by the X_i, after
 we know their total tells us nothing about π.
2. Definition: $T(X_1, \cdots, X_n)$ is sufficient for θ if the
distr of X_1, \cdots, X_n conditional on T doesn’t depend
O. Rao Blackwell Theorem:
Reduce the variance of an unbiased estimator by conditioning on a sufficient statistic.

1. Suppose
 a. $\hat{\theta}$ unbiased for θ
 b. U sufficient for θ
2. Let $\hat{\theta} = E[\hat{\theta}|U]$.
 a. Then $\text{Var}[\hat{\theta}] = \text{Var}[E[\hat{\theta}|U]] + E[\text{Var}[\hat{\theta}|U]] \geq \text{Var}[\hat{\theta}]$.
3. Hence can find another estimator with often smaller variance.
4. Example: $X_1, \cdots, X_n \sim \text{U}[0, \theta]$.

5. Example $X, Y \sim P(\theta)$
 a. $\hat{\mu} = \frac{1}{4} X + \frac{2}{3} Y$
 i. $\hat{\mu} = \frac{1}{3} \Rightarrow X = 2$ and $Y = 0$ or $X = 0$ and $Y = 1$
 ii. $P [X = 2|\hat{\mu} = \frac{1}{3}] = \frac{\exp(-\mu)\mu^2/2!\exp(-\mu) + \exp(-\mu)\exp(-\mu)\mu^1/1!}{\mu^2 + 2\mu}$
 iii. does not depend on μ; $\hat{\mu}$ not sufficient
 b. $\hat{\mu} = \frac{1}{3} X + \frac{2}{3} Y$
 i. $P [X = x|\hat{\mu} = u] = \frac{\exp(-2u\mu^2/2!\exp(-2u\mu^2)\mu^{2u-x}/(2u-x)!}{x!(2u-x)!}$
 ii. does not depend on μ; sufficient
6. Hence entire data set X_1, \cdots, X_n is sufficient.
 a. For independent data, so is ordered data set.
7. Example where sufficient statistic doesn’t tell the whole story:
 a. A collection of cars is inspected for defective wheels
 b. Estimate the proportion π of wheels which are defective.
 c. Under the binomial model, the sample proportion is sufficient for inference on π.
 d. Consider two scenarios:

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># of wheels</td>
<td># of times</td>
</tr>
<tr>
<td>defective</td>
<td>observed</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

 i. Both scenarios give the same estimate of π
 ii. The second case gives strong evidence that the binomial model is wrong.
 iii. This demonstrates that the sufficient statistic tells about the parameters in the model; remainder tells about the suitability of the model itself.

WMS: 9.5