d. Conditionality principal: If

i. data arises from random mixture of experiments
 • Here indexed by d_+

ii. mixing distribution does not depend on unknown parameter

iii. Then perform inference based on experiment we see

e. p-value $2 \times \min(P[d_0 \geq \text{observed}] , P[d_0 \leq \text{observed}])$
 i. $= 2\Phi(-|\text{observed} - \text{observed}| / \sqrt{d_+\pi(1 - \pi)})$.
 ii. To properly account for probability at observed, add $\pm \frac{1}{2}$ to numerator to make absolute value smaller. See Figure 3.

f. Get CI for π using

i. Normal approx. $\pi \in d_1/d_+ \pm 1.96 \sqrt{\frac{d_0d_1}{(d_1+d_0)^3}}$
 • Problem if $d_0 = 0$
 • Less obvious problem for small $d_1 + d_0$

ii. Fix problem by working exactly:
 • Lower bound π_L satisfies $P_{\pi}[d_0 \geq \text{observed}] = .025$
 • Upper bound π_U satisfies $P_{\pi}[d_0 \leq \text{observed}] = .025$
 • Vertical line has probability .95 for any value of parameter
 • Hence horizontal line has same coverage
 • Lower confidence bound is generated by upper quantile and
vice versa

- See Figure 4.
- Can be expressed in terms of F distribution upper tail:
iii. Are intermediate policies between these extremes.

B&D2: 3.4c–e

g. Get CI for q using $q = e_0\pi / [e_1(1 - \pi)]$ evaluated at upper and lower CI of π_1

i. Works since relationship between π_1 and q is strictly increasing.
Lecture 4

h. Special Case: one age group
 i. Then population SMR = relative risk for exposure group relative to standard population
 ii. Then ratio of population SMR = relative risk for exposure groups

5. Multiple (K) Exposure Categories
 a. How do exposure groups differ?
 i. Choose one group as baseline
 • Usually the one with no exposure, if there is one
 • Be careful what you lump in here
 ii. Calculate relative risks with respect to this group
 b. Wrong answer:
 i. Calculate hypothesis tests
 • for each pair
 • or against a baseline
 ii. Claim heterogeneity if any of these shows up different
 c. To avoid multiple comparisons, need one test for all groups
 d. Choose a measure of disagreement with null answer
i. Calculate Expected value
 - Expected value in light of all coming from this non–standard cohort
 - Hence don’t expect each rate to be associated expectation
 - Expect each rate to be \(\propto \) associated expectation
 - \(E_k = d_k Q_k / \sum_j Q_j \)

ii. Use as test statistic sum distances from expectation
 - squared
 - weighted by estimated variance
 - \(\sum_k (d_k - E_k)^2 / E_k \)
 - Distribution is that of sum of \(K \) squared \(\mathcal{N}(0, 1) \)
 - Not independent
 - Equivalent to \(K - 1 \) independent \(\mathcal{N}(0, 1)^2 \)
 - Distribution called \(\chi^2 \) on \(K - 1 \) degrees of freedom

e. Why not CI?
 i. CI can give test when we have one parameter to test
 ii. Here we need \(K - 1 \) parameters
 iii. CI becomes confidence region: more complicated.

f. Exact methods?
i. Same test statistic

ii. Distribution in cells is given by sequence of binomials

iii. Hard to calculate

g. When $K = 2$:

i. $d_1 = d_+ - d_0$ and $E_1 = d_+ - E_0$.

ii. $E_1 = d_+ \pi$

iii. $T = (d_0 - E_0)^2/E_0 + (d_1 - E_1)^2/E_1 = (d_0 - E_0)^2[1/E_0 + 1/E_1] = (d_0 - E_0)^2d_+^{-1}[1/\pi + 1/(1-\pi)] = (d_0 - E_0)^2d_+^{-1}/(\pi(1-\pi))$

iv. Hence χ^2 statistic is square of Z statistic

v. Hence inference is the same.