Lecture 8

7. Model contains log of time at risk as an offset
 a. Fit component is added to every log rate
 b. If you know something that rates might be proportional
to, log of this could be added to the offset as well
 i. For ex, rate in unexposed population by age

8. Parameters are log of relative risk for individuals with
covariate 1 unit apart, identical otherwise.

9. Testing parameter values is done via
 a. standard errors, which come from Delta method (Wald
test)
 i. Also gives CI
 B&D1: 6.4
 b. likelihood ratio
 i. Write down probability for data
 ii. Express as function of unknown parameters
 • Function L is called likelihood.
 iii. Parameter value that maximizes L is called the
 maximum likelihood estimate
 iv. H_0 is plausible if L is not much higher somewhere
 else.
 v. Hence test hypothesis by comparing maximized value
to value at null
 • compare with ratio to get likelihood ratio test
 • usually take log: l = log(L).

Lecture 8

Heuristic explanation: Rates for (1,0,0) and
(0,1,1) are the same, and so can’t tell difference
between them.

Problem is called colinearity
B&D2: 4.6

10. Does model fit well?
 a. Predicted mean values for each of the groups ought to
 be about right
 b. Hence \(\sum_j (O_{jk} - E_{\theta_j})^2/Var_{\theta_j} \) ought to be
 approximately \(\chi^2 \)
 i. For Poisson regression,
 \(E_{\theta}[O_j] = Var_{\theta}[O_j] = \exp(x_k\beta)Q_j \)
 ii. DF is number of groups - number of parameters
 c. Alternatively, use likelihood ratio
 i. Embed in bigger model where every observation gets
 its own parameter value

F. Regression models for probabilities instead of rates
 B&D2: 4.7

1. Proportional Mortality
 a. What if we don’t have person-years at risk?
 b. How do risks of two (mutually exclusive) events compare?
 i. Assume \(O_k^1 \sim P(\lambda_k) \), \(O_k^2 \sim P(\nu_k) \)
 ii. Then \(O_k^1/O_k^+ \sim Bin(\pi_k, O_k^+) \) for
 \(\pi_k = \lambda_k/(\lambda_k + \nu_k) \)

ii. 960-542 provides more powerful and natural ways to
 960-542 model dependence of rate on time

3. Parameter estimates are logs of odds for individuals with
covariate 1 unit apart, identical otherwise.

4. Complications:
 a. Do iterations bounce back and forth without
 converging?
 b. Sometimes best fits for parameters are \(\pm \infty \)
 c. Tests can mislead when some groups have small
 expected value

5. Problematic Examples
 a. Cohort Study with Common Disease
 i. Poisson methods fail
 • Counts of cases large enough to be influenced by
 finiteness of population are not rare enough
 b. Studies with rates that vary quickly with age,
 i. changing rate is accounted for by using age interval
 as class variable and modeling relation between class
 levels.
 c. 960-542 provides more powerful and natural ways to
 model dependence of rate on time
 Se: 7 pp. 214-220

6. Logistic regression for \(K \times 2 \) tables:
 a. \(O_k[O_{k+} \sim Bin(O_{k+}, 1/(1 + \exp(-\beta_0 - \beta_k)) \)
 b. For \(2 \times 2 \) table analysis, cohort study (exposed and
 unexposed group sizes fixed)
 i. Recall notation: \(O_{k+} \) is number of
 \(\{ \text{cases if } j = 1 \}
 \{ \text{controls if } j = 0 \)
 at exposure level

\[\pi_k = \exp(x_k\beta)/[\exp(x_k\beta + \exp(x_k\delta))] = \exp(x_k\beta - \delta)/[\exp(x_k\beta - \delta) + 1] \]

\[\logit(p_{jk}) = x_k\beta \]

\[\text{Method is called logistic regression.} \]

\[\text{Standard errors come from delta method} \]

2. Fitting the model:
 a. Start with a guess of best values for \(\beta \)
 i. Call them \(\beta^0 \)
 ii. Almost any value (like 0) will do.
 b. If \(z \) close to \(y \) then expand \(\exp(z)/(1 + \exp(z)) \) as
 Taylor series
 c. Then
 \[O_{1j} = O_{1j} + \sqrt{O_{1j} \pi_j(1 - \pi_j)e_j} \]
 \[\approx O_{1j} \pi_j^0(1 + (1 - \pi_j^0)x_j(\beta - \beta^0)) + \]
 \[\sqrt{O_{1j} \pi_j^0(1 - \pi_j^0)e_j} \]

 d. Hence
 \[\frac{O_{1j} - O_{1j} \pi_j^0}{\sqrt{O_{1j} \pi_j^0(1 - \pi_j^0)}} \]
 \[\approx \sqrt{O_{1j} \pi_j^0(1 - \pi_j^0)x_j(\beta - \beta^0) + e_j} \]
 i. \(\pi_j^0 = 1/(1 + \exp(-x_j\beta^0)) \)
 ii. \(e_j \sim N(0, 1) \)
 iii. Now this looks like a regular regression problem
 e. Use multiple regression to update guess
i. Do multiple times
ii. Method is called iteratively reweighted least squares.
\[
\begin{cases}
\text{exposed} & \text{if } k = 1 \\
\text{none} & \text{if } k = 0
\end{cases}
\text{ in strata } i \text{ (if needed)}
\]

ii. Expression as binomials

- Number of cases among unexposed is \(O_{0i} \sim \text{Bin}(\pi_0, O_{0+}) \)
- Number of cases among exposed is \(O_{1i} \sim \text{Bin}(\pi_1, O_{1+}) \)

iii. Write as regression model

- \(\logit(\pi_0) = \beta_0 \)
- \(\logit(\pi_1) = \log(\pi_1/(1 - \pi_1)) = \log(\pi_0/(1 - \pi_0)) + \log(\psi) = \beta_0 + \beta_1 \) for \(\beta_1 = \log(\psi) \).

iv. Recall we conditioned on \(O_{1+} \) to remove effect of \(\beta_0 \)

c. We have too many parameters

i. Can decrease \(\beta_0 \) and increase each other \(\beta_k \) and get same probabilities

ii. Three typical solutions:

- Set \(\beta_0 = 0 \): Results in separate log odds fits for each row.
- Set \(\sum_{k=1}^{K} \beta_k = 0 \): Makes \(\beta_0 \) an “average” log odds, and rest are log odds ratios in comparison to average.
- Set \(\beta_{k'} = 0 \) for some \(k' \in \{1, \ldots, K\} \).
 \(\triangleright \) Makes group \(k' \) the reference group
 \(\triangleright \) \(\beta_0 \) represents log odds for reference group
 \(\triangleright \) \(\beta_k \) is the log odds for group \(k \) with respect to group \(k' \).
 \(\triangleright \) Typically choose \(k' \) as 1 or \(K \).

iii. Unlike contingency table approach, this approach is not conditional on number with disease.

Se: 7 pp. 220–229

d. We can use this approach for stratified \(K \times 2 \) tables

i. to estimate common odds ratios

ii. to test whether odds ratio is really constant.
 \(\triangleright \) non-constant odds ratio is equivalent to interactions between effect and stratification variable

iii. Unlike Mantel–Haenzel approach, this approach is not conditional on disease numbers in each table.

e. Approach can be extended to scored categories.

i. Add in score as a covariate

This page intentionally left blank.