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General Information

• Lectures : Tue, Thu 11:40am - 12:55pm, Caldwell Hall 100

• Instructor : Ping Li, pingli@cornell.edu,

Office Hours: Wed. 3pm - 4:10 pm, Comstock Hall 1192.

• TA: No TA for this course

• Prerequisite : BTRY6010/BTRY6020 Or equivalent

• Textbook : Alan Agresti, An Introduction to Categorical Data Analysis
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• Homework

– About 5-8 homework assignments.

– Please turn in your homework either in class or to BSCB front desk

(Comstock Hall, 1198).

– No late homework will be accepted.

– Before computing your overall homework grade, the assignment with the

lowest grade (if≥ 25%) will be dropped, the one with the second lowest

grade (if≥ 50%) will also be dropped.

– It is the students’ responsibility to keep copies of the submitted homework.
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• Course grading :

1. Homework: 35%

2. Prelim I: 15% or 20%

3. Prelim II: 15% or 20%

4. Final: 30%

The lower Prelim score will be counted 15% and the higher Prelim score will

be counted 20%

• Course letter grade:

A = 90% (in the absolute scale)

C = 60% (in the absolute scale)

In borderline cases, class participation will be used as a determining factor.
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Course Description

• Material: Logistic regression, Support vector machines (SVM), Clustering,

Log-linear models, Stratified tables, matched pairs analysis, polytomous

response, and ordinal data. Applications in biomedical, social science, and

computer science. Recent techniques for dealing with massive data will also

be introduced.

• Matlab: Basic programming in Matlab will be taught in the class. Some

programming assignments will require coding in Matlab.

• R: The R package will also be used. It is available free from the

Comprehensive R Archive Network (CRAN): http://www.r-project.org/.
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Textbook

Wiley Online Library kindly offers the online version of the textbook:

http://onlinelibrary.wiley.com/doi/10.1002/

9780470114759.ch1/pdf

Replace “ch1” with “ch2” etc for other chapters.

We will cover selected topics from chapters 1 to 10. The major emphasis of this

course is about contingency tables and logistic regression (and related

techniques in classification and clustering).
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Calculus Review: Derivatives

Simple derivatives:

[log x]′ =
1

x
, [xn]′ = nxn−1, [ex]′ = ex, [ax]′ = ax log a

Chain rule:

[f(h(x))]′ = f ′ (h(x)) h′(x)

[

log
(

ax2 + e2x
)]′

=
1

(ax2 + e2x)

[

ax2 + e2x
]′

=
2ax + 2e2x

(ax2 + ex)

Multivariate derivatives:

f(x, y) = ax + xny + cy2,

∂f(x, y)

∂x
= ax log a + nxn−1y,

∂f(x, y)

∂y
= xn + 2cy
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Contingency Table Estimations

Original Contingency Table Sample Contingency Table

2221

Ν Ν

ΝΝ

11 12

22

n 11 n 12

n 21 n

Suppose we only observe the sample contingency table, how can we estimate the

original table, if N = N11 + N12 + N21 + N22 is known?

(Almost) equivalently, how can we estimate πij =
Nij

N ?
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An Example of Contingency Table

The task is to estimate how many times two words (e.g., Cornell and University)

co-occur in all the Web pages (over 10 billion).

No Word 2

21

Ν Ν

ΝΝ

11 12

22

Word 1

Word 2

No Word 1

N11: number of documents containing both word 1 and word 2.

N22: number of documents containing neither word 1 nor word 2.
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Google Pagehits

Google tells user the number of Web pages containing the input query word(s).

Pagehits by typing the following queries in Google (numbers can change):

• a : 25,270,000,000 pages (a surrogate for N , the total # of pages).

• Cornell : 99,600,000 pages. (N11 + N12)

• University : 2,700,000,000 pages. (N11 + N21)

• Cornell University : 31,800,000 pages. (N11)

No Word 2

21

Ν Ν

ΝΝ

11 12

22

Word 1

Word 2

No Word 1

How much do we believe these numbers?
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Suppose there are in total n = 107 word items.

It is easy to store 107 numbers (how many documents each word occurs in), but it

would be difficult to store a matrix of 107 × 107 numbers (how many documents

a pair of words co-occur in).

Even if storing 107 × 107 is not a problem (it is Google), it is much more difficult

to store 107 × 107 × 107 numbers, for 3-way co-occurrences (e.g., Cornell,

University, Statistics).

Even if we can store 3-way or 4-way co-occurrences, most of the items will be so

rare that they will almost never be used.

Therefore, it is realistic to believe that the counts for individual words are exact,

but the numbers of co-occurrences may be estimated, eg, from some samples.
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Estimating Contingency Tables by MLE of Multinomial Sampli ng

Original Contingency Table Sample Contingency Table

π

11 12

21 22

π π

π
22

n 11 n 12

n 21 n

Observations: (n11, n12, n21, n22), n = n11 + n12 + n21 + n22.

Parameters (π11, π12, π21, π22), (π11 + π12 + π21 + π22 = 1)
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The likelihood

n!

n11!n12!n21!n22!
πn11

11 πn12
12 πn21

21 πn22
22

The log likelihood

l = log
n!

n11!n12!n21!n22!
(which is not important, why?)

+ n11 log π11 + n12 log π12 + n21 log π21 + n22 log π22

We can choose to write π22 = 1− π11 − π12 − π21.

Finding the maximum (setting first derivatives to be zero)

∂l

π11
=

n11

π11
+

−n22

1− π11 − π12 − π21
= 0,

=⇒ n11

π11
=

n22

π22
or written as

π11

π22
=

n11

n22
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Similarly

n11

π11
=

n12

π12
=

n21

π21
=

n22

π22
.

Therefore

π11 = n11λ, π12 = n12λ, π21 = n21λ, π22 = n22λ,

Summing up all the terms

1 = π11 + π12 + π21 + π22 = [n11 + n12 + n21 + n22] λ = nλ

yields λ = 1
n .

The MLE solution is

π̂11 =
n11

n
, π̂12 =

n12

n
, π̂21 =

n21

n
, π̂22 =

n22

n
.
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Finding the MLE Solution by Lagrange Multiplier

MLE as a constrained optimization:

argmax
π11,π12,π21,π22

n11 log π11 + n12 log π12 + n21 log π21 + n22 log π22

subject to : π11 + π12 + π21 + π22 = 1

The unconstrained optimization problem:

argmax
π11,π12,π21,π22

L = n11 log π11 + n12 log π12 + n21 log π21 + n22 log π22

− λ (π11 + π12 + π21 + π22 − 1)

Finding the optimum: ∂L
∂z = 0, z ∈ {π11, π12, π21, π22, λ}

n11

π11
− λ = 0,

n12

π12
=

n21

π21
=

n22

π22
= λ, π11 + π12 + π21 + π22 = 1
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Quick Review of Numerical Optimization

Slides 16 - 29 are for reviewing some basic stuff about numerical optimization,

which is essential in modern applications.
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Maximum Likelihood Estimation (MLE)

Observations xi, i = 1 to n, are i.i.d. samples from a distribution with probability

density function fX (x; θ1, θ2, ..., θk),

where θj , j = 1 to k, are parameters to be estimated.

The maximum likelihood estimator seeks the θ to maximize the joint likelihood

θ̂ = argmax
θ

n
∏

i=1

fX(xi; θ)

Or, equivalently, to maximize the log joint likelihood

θ̂ = argmax
θ

n
∑

i=1

log fX(xi; θ)

This is a convex optimization if fX is concave or -log-convex.
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An Example: Normal Distribution

If X ∼ N
(

µ, σ2
)

, then fX

(

x; µ, σ2
)

= 1√
2πσ

e−
(x−µ)2

2σ2

Fix σ2 = 1, x = 0. fX

(

x; µ, σ2
)

log fX

(

x; µ, σ2
)

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

µ

f X
 (

x;
 µ

,σ
2 )

−2 −1 0 1 2
−3

−2.5

−2

−1.5

−1

−0.5

µ

lo
g 

f X
(x

; µ
, σ

2 )

It is Not concave, but it is a -log convex, i.e., a unique MLE solution exists.
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Another Example of Exact MLE Solution

Given n i.i.d. samples, xi ∼ N(µ, σ2), i = 1 to n.

l
(

x1, x2, ..., xn; µ, σ2
)

=
n
∑

i=1

log fX(xi; µ, σ2)

= − 1

2σ2

n
∑

i=1

(xi − µ)2 − 1

2
n log(2πσ2)

∂l

∂µ
=

1

2σ2
2

n
∑

i=1

(xi − µ) = 0 =⇒ µ̂ =
1

n

n
∑

i=1

xi

∂l

∂σ2
=

1

2σ4

n
∑

i=1

(xi − µ)2 − n

2σ2
= 0 =⇒ σ̂2 =

1

n

n
∑

i=1

(xi − µ̂)2.



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 20

Convex Functions

A function f(x) is convex if the second derivative f ′′(x) ≥ 0.

−2 −1 0 1 2
0

1

2

3

4

x

f(
x)

=
x2

f(x) = x2

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

x

f(
x)

=
xl

og
(x

)

f(x) = xlog(x)

f(x) = x2 =⇒ f ′′ = 2 > 0, i.e., f(x) = x2 is convex for all x.

f(x) = x log x =⇒ f ′′ = 1
x , i.e., f(x) = x log x is convex if x > 0.

Both are widely used in statistics and data mining as loss functions,

=⇒ computationally tractable algorithms: least square, logistic regression.
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Left panel: f(x) = 1√
2π

e−
x2

2 is -log convex,
∂2[− log f(x)]

∂x2 = 1 > 0.
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f(
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x
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f(
x)

Right panel: a mixture of normals is not -log convex

f(x) = 1√
2π

e−
x2

2 + 1√
2π10

e−
(x−10)2

200

The mixture of normals is an extremely useful model in statistics.

In general, only a local minimum can be obtained.
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Steepest Descent

y

y=f(x)

xxx 012x34x x

Procedure:

Start with an initial guess x0.

Compute x1 = x0 −∆f ′(x0), where ∆ is the step size.

Continue the process xt+1 = xt −∆f ′(xt).

Until some criterion is met, e.g., f(xt+1) ≈ f(xt)

The meaning of “steepest” is more clear in the two-dimensional situation.
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An Example of Steepest Descent: f(x) = x2

f(x) = x2. The minimum is attained at x = 0, f ′(x) = 2x.

The steepest descent iteration formula xt+1 = xt −∆f ′(xt) = xt − 2∆xt.

0 1 2 3 4 5 6 7 8 910 12 14 16 17
−10

−5

0

5

10

Iteration

 

 

∆ = 0.45
∆ = 0.1
∆ = 0.9

Choosing the step size ∆ is important (even when f(x) is convex).

Too small ∆ =⇒ slow convergence, i.e., many iterations,

Too large ∆ =⇒ oscillations, i.e., also many iterations.
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Steepest Descent in Practice

Steepest descent is one of the most widely techniques in real world

• It is extremely simple

• It only requires knowing the first derivative

• It is numerically stable (for above reasons)

• For real applications, it is often affordable to use very small ∆

• In machine learning, ∆ is often called learning rate

• It is used in Neural Nets and Gradient Boosting (MART)
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Newton’s Method

Recall the goal is to find the x∗ to minimize f(x).

If f(x) is convex, it is equivalent to finding the x∗ such that f ′(x∗) = 0.

Let h(x) = f ′(x). Take Taylor expansion about the optimum solution x∗:

h(x∗) = h(x) + (x∗ − x)h′(x) + “negligible” higher order terms

Because h(x∗) = f ′(x∗) = 0, we know approximately

0 ≈ h(x) + (x∗ − x)h′(x) =⇒ x∗ ≈ x− h(x)

h′(x)
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The procedure of Newton’s Method

Start with an initial guess x0

Update x1 = x0 − f ′(x0)
f ′′(x0)

Repeat xt+1 = xt − f ′(xt)
f ′′(xt)

Until some stopping criterion is reached, e.g., xt+1 ≈ xt.

An example: f(x) = (x− c)2. f ′(x) = 2(x− c), f ′′(x) = 2.

x1 = x0 − f ′(x0)
f ′′(x0)

=⇒ x1 = x0 − 2(x0−c)
2 = c

But we already know that x = c minimizes f(x) = (x− c)2.

Newton’s method may find the minimum solution using only one step.
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An Example of Newton’s Method: f(x) = x log x

f ′(x) = log x + 1, f ′′(x) = 1
x . xt+1 = xt − log xt+1

1/xt

0 1 2 3 4 5 6 7 8 910 12 14 16 18

0

0.2

0.4

0.6

0.8

1

Iteration

 

 

x
0
 = 0.5

x
0
 = 10−10

x
0
 = 1−10−10

When x0 is close to optimum solution, the convergence is very fast

When x0 is far from the optimum, the convergence is slow initially

When x0 is badly chosen, no convergence. This example requires 0 < x0 < 1.
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Steepest Descent for f(x) = x log x

f ′(x) = log x + 1, xt+1 = xt −∆(log xt + 1)

0 10 20 30 40
0

2

4

6

8

10

Iteration

x t

 

 

x
0
 = 0, ∆ = 0.1

x
0
 = 10,  ∆ = 0.1

x
0
  = 10, ∆ = 0.9

Regardless of x0, convergence is guaranteed if f(x) is convex.

May be oscillating if step size ∆ is too large

Convergence is slow near the optimum solution.
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General Comments on Numerical Optimization

Numerical Optimization is tricky!, even for convex problems.

Multivariate optimization is much trickier!

Whenever possible, try to avoid intensive numerical optimization,

even maybe at the cost of losing some accuracy.

An example :

Iterative Proportional Scaling for contingency table with known margins
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Contingency Table with Margin Constraints

Original Contingency Table Sample Contingency Table

2221

Ν Ν

ΝΝ

11 12

22

n 11 n 12

n 21 n

Margins: M1 = N11 + N12, M2 = N11 + N21.

Margins are much easier to be counted exactly than interactions.
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An Example of Contingency Tables with Known Margins

Term-by-Document matrix n = 106 words and m = 1010 (Web) documents.

Cell xij = 1 if word i appears in document j. xij = 0 otherwise.

0

Word n

Word 4

Word 2

Word 1

Word 3

Doc 1 Doc 2 Doc m

1 0

10

0 1 0

0 1 0 0 1 0

10

No Word 2

21

Ν Ν

ΝΝ

11 12

22

Word 1

Word 2

No Word 1

N11: number of documents containing both word 1 and word 2.

N22: number of documents containing neither word 1 nor word 2.

Margins (M1 = N11 + N12, M2 = N11 + N21) for all rows costs nm, easy!

Interactions (N11, N12, N21, N22) for all pairs costs n(n− 1)m/2, difficult!.
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To avoid storing all pairwise contingency tables (n(n− 1)/2 pairs in total), one

strategy is to sample a fraction (k) of the columns of the original (term-doc) data

matrix and and build sample contingency tables on demand, from which one can

estimate the original contingency tables.

However, we observe that the margins (the total number of ones in each row) can

be easily counted. This naturally leads to the conjecture that one might (often

considerably) improves the estimation accuracy by taking advantage of the known

margins. The next question is how.

Two approaches :

1. Maximum likelihood estimator (MLE) accurate but fairly complicated.

2. Iterative proportional scaling (IPS) simple but usually not as accurate.
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An Example of IPS for 2 by 2 Tables

22

n 11 n 12

n 21 n

The steps of IPS

(1) Modify the counts to satisfy the row margins.

(2) Modify the counts to satisfy the column margins.

(3) Iterate until some stopping criterion is met.

An example: n11 = 30, n12 = 5, n21 = 10, n22 = 10, D = 600.

M1 = N11 + N12 = 400, M2 = N11 + N21 = 300.

In the first iteration: N11 ← M1

n11+n12
n11 = 400

35 30 = 342.8571.
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Iteration 1

342.8571 57.1429

100.0000 100.0000

232.2581 109.0909

67.7419 190.9091

Iteration 2

272.1649 127.8351

52.3810 147.6190

251.5807 139.2265

48.4193 160.7735

Iteration 3

257.4985 142.5015

46.2916 153.7084

254.2860 144.3248

45.7140 155.6752



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 35

Iteration 4

255.1722 144.8278

45.3987 154.6013

254.6875 145.1039

45.3125 154.8961

Iteration 5

254.8204 145.1796

45.2653 154.7347

254.7477 145.2211

45.2523 154.7789

Iteration 6

254.7676 145.2324

45.2453 154.7547

254.7567 145.2386

45.2433 154.7614
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Error = |current step - previous step counts|, sum over four cells.

0 1 2 3 4 5 6 7 8 910 12 14 16 18 20

10
−12

10
−10

10
−8

10
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10
−4

10
−2

10
0

10
2

Iteration

A
bs

ol
ut

e 
er

ro
r

IPS converges fast and it always converges.

But how good are the estimates?: My general observation is that it is very good

for 2 by 2 tables and the accuracy decreases (compared to the MLE) as the table

size increases.
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The MLE for 2 by 2 Table with Known Margins

Total samples : n = n11 + n12 + n21 + n22

Total original counts : N = N11 + N12 + N21 + N22, i.e., πij = Nij/N .

Sample Contingency Table Original Contingency Table

22

n 11 n 12

n 21 n 2221

Ν Ν

ΝΝ

11 12

Margins: M1 = N11 + N12, M2 = N11 + N21.

If margins M1 and M2 are known, then only need to estimate N11.
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The likelihood

∝
(

N11

N

)n11
(

N12

N

)n12
(

N21

N

)n21
(

N22

N

)n22

The log likelihood

n11 log

(

N11

N

)

+ n12 log

(

N12

N

)

+ n21 log

(

N21

N

)

+ n22 log

(

N22

N

)

=n11 log

(

N11

N

)

+ n12 log

(

M1 −N11

N

)

+ n21 log

(

M2 −N11

N

)

+ n22 log

(

N −M1 −M2 + N11

N

)

The MLE equation

n11

N11
− n12

M1 −N11
− n21

M2 −N11
+

n22

N −M1 −M2 + N11
= 0.

which is a cubic equation and can be solved either analytically or numerically.
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Error Analysis

To assess the quality of the estimator θ̂ of θ, it is common to use bias, variance,

and MSE (mean square error):

Bias : E(θ̂)− θ

Var : E
(

θ̂ −E(θ̂)
)2

= E(θ̂2)− E2(θ̂)

MSE : E
(

θ̂ − θ
)2

= V ar + Bias2

The last equality is known as the bias variance trade-off. For unbiased estimators,

it is desirable to have smaller variance as possible. As the sample size increases,

the MLE (under certain conditions) becomes unbiased and achieves the smallest

variance. Therefore, the MLE is often a desirable estimator. However, in some

cases, biased estimators may achieve smaller MSE than the MLE.
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The Expectations and Variances of Common Distributions

The derivations of variances are not required in this course. Nevertheless, it is

useful to know the expectations and variances of common distributions.

• Binomial : X ∼ binomail(n, p), E(X) = np, V ar(X) = np(1− p).

• Normal : X ∼ N(µ, σ2), E(X) = µ, V ar(X) = σ2.

• Chi-square : X ∼ χ2(k), E(X) = k, V ar(X) = 2k.

• Exponential : X ∼ exp(λ), E(X) = 1
λ , V ar(X) = 1

λ2 .

• Poisson : X ∼ Pois(λ), E(X) = λ, V ar(λ).
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Multinomial Distribution

The multinomial is a natural extension to the binomial distribution. For example,

the 2 by 2 contingency table often assumes to follow the multinomial distribution.

Consider c cells and denote the observations by (n1, n2, ..., nc), which follow a

c-cell multinomial distribution with the underlying probabilities (π1, π2, ..., πc)

(with
∑c

i=1 πi = 1). Denote n =
∑c

i=1 ni. We write

(n1, n2, ..., nc) ∼Multinomial (n, π1, π2, ..., πc)

The expectations are (for i = 1 to c and i 6= j)

E (ni) = nπi, V ar (ni) = nπi(1− πi), Cov (ninj) = −nπiπj .

Note that the cells are negatively correlated (why?).
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Variances of the 2 by 2 Contingency Table Estimates

Using previous notation, the MLE estimator of N11 is

N̂11 =
n11

n
N, (n11, n12, n21, n22) ∼Multinomial(n, π11, π12, π21, π22)

Using the general equalities about the expectations:

E(aX) = aE(X), V ar(aX) = a2V ar(X)

we know

E
(

N̂11

)

=
N

n
E(n11) =

N

n
nπ11 = Nπ11 = N11

V ar
(

N̂11

)

=
N2

n2
V ar(n11) =

N2

n2
nπ11(1− π11) =

N2

n
π11(1− π11)
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The Asymptotic Variance of the MLE Using Margins

When the margins are known: M1 = N11 + N12, M2 = N12 + N21

The MLE equation

n11

N11
− n12

M1 −N11
− n21

M2 −N11
+

n22

N −M1 −M2 + N11
= 0.

The asymptotic variance of the solution, denoted by N̂11,M , can be shown to be

V ar
(

N̂11,M

)

=
N

n

1
1

N11
+ 1

N12
+ 1

N21
+ 1

N22

which is smaller than the variance of the MLE without using margins.

———-

What about the variance of IPS? : No closed-form answer and the estimates are

usually biased.
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Statistical Testing of Independence of Contingency Tables

In general, a contingency table can be described by its underlying probabilities for

random variables X and Y :

πij = Pr (X = i, Y = j) ,
∑

i,j

πij = 1

The observations nij from a sample follows the multinomial distribution if
∑

ij nij = n is fixed; we usually denote the sample proportion as

π̂ij =
nij

n
, and hence

∑

i,j

π̂ij = 1

And we know from previous lectures that π̂ij is an unbiased estimator of πij and

it is the MLE. Now the question is whether the counts nij ’s are purely due to

random chance or due to the dependence between X and Y .
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Marginal Probabilities, Marginal Observations, Independ ence

Marginal Probabilities :

πi+ = Pr (X = i) =
∑

j

Pr (X = i, Y = j) =
∑

j

πij

π+j = Pr (Y = j) =
∑

i

Pr (X = i, Y = j) =
∑

i

πij

Marginal Observations :

ni+ =
∑

j

nij , n+j =
∑

i

nij

Independence : If

Pr (X = i|Y = j) = Pr (X = i)

then we say X and Y are independent.
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Consequence of Independence

If X and Y are independent, then basic fact is that

Pr (X = i, Y = j) = Pr (X = i)×Pr (Y = j)

i.e., πij = πi+ × π+j

In general, if X and Y are independent, then Pr (X = i, Y = j) 6= 0.

—————

An interesting consequence of the independence assumption.

If the margins the original tables are known, for example, M1, M2. Then we can

estimate the counts without using samples, for example, N̂11,IND = M1M2

N .

This is widely used in practice due to its simplicity.
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Hypothesis Testing of Independence

Consider a contingency table: πij , i = 1 to I , and j = 1 to J .

We observe: nij , i = 1 to I , and j = 1 to J .

Assuming independence, then πij = πi+π+j and we expect that

nij = nπ̂i+π̂+j . We use a special notation µ̂ij = nπ̂i+π̂+j .

The task is to test the null hypothesis:

H0 : πij = πi+π+j , for all i and j.

The fundamental tool is the likelihood ratio statistic.
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The Likelihood Ratio Statistic

It is defined as

−2 log

(

Maximum likelihood under H0

Maximum likelihood with no restriction

)

which is asymptotically distributed as χ2
k with k determined by the degree of

freedom (red df):

df = number of parameters to be estimated without restrictions

− number of parameters to be estimated under H0

This result can be derived by large-sample theory.
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The Likelihood Ratio Statistic For Contingency Tables

Maximum likelihood under H0:

∏

i,j

[

µ̂ij

n

]nij

Maximum likelihood without restrictions :
∏

i,j

[nij

n

]nij

Likelihood Ratio Statistic :

−2 log

∏

i,j

[

µ̂ij

n

]nij

∏

i,j

[nij

n

]nij
=2
∑

i,j

nij log
nij

n
− 2

∑

i,j

nij log
µ̂ij

n

=2
∑

i,j

nij log
nij

µ̂ij
= G2.
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Degree of freedom :

df = [I × J − 1]− [(I − 1) + (J − 1)] = (I − 1)(J − 1)

The Chi-Square Statistic :

X2 =
∑

i,j

(nij − µ̂ij)
2

µ̂ij

which is asymptotically equivalent to G2 and can be derived by a Taylor

expansion of G2.

Both statistics are very popular and their numerical values are usually very close.
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An Example of Testing of Independence: Book 2.4.4

Cross Classification of Party Identification by Gender

Gender Democrat Independent Republican Total

Female 762 327 468 1557

Male 484 239 477 1200

Total 1246 566 945 2757

A 2× 3 contingency table with I = 2 and J = 3. The sample margins are

n1+ = 762 + 327 + 468 = 1557, n2+ = 484 + 239 + 477 = 1200

n+1 = 762 + 484 = 1246, n+2 = 327 + 239 = 566, n+3 = 945

Task: Test whether the cells are independent .
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Expected counts under H0: independence : µ̂ij = ni+ × n+j/n

Gender Democrat Independent Republican Total

Female 762 (703.7) 327 (319.6) 468 (533.7) 1557

Male 484 (542.3) 239 (246.4) 477 (411.3) 1200

Total 1246 566 945 2757

G2 test statistic : G2 = 2
∑

ij nij log
nij

µ̂ij
= 30.0

X2 test statistic : X2 =
∑

ij
(nij−µ̂ij)

2

µ̂ij
= 30.1

Degree of freedom : df = (I − 1)(J − 1) = 2.
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Accept or Reject H0?

Both G2 and X2 are asymptotically χ2
df = χ2

2. Thus, we check the cumulative

probability of χ2 to compute the p-value:

Pr
(

G2 > 30.0
)

= 3.059× 10−7

Pr
(

X2 > 30.1
)

= 2.910× 10−7

Both p-values are extremely small≪ 0.05. Therefore, we reject the null

hypothesis H0 that the cells are independent.
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A Review of Testing Hypothesis

Suppose you have a coin which is possibly biased. You want to test whether the

coin is indeed biased (i.e., p 6= 0.5), by tossing the coin n = 10 times.

Suppose you observe k = 8 heads (out of n = 10 tosses). It is reasonable to

guess that this coin is indeed biased. But how to make a precise statement?

Are n = 10 tosses enough? How about n = 100? n = 1000? What is the

principled approach?
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Terminology

Null hypothesis H0 : p = 0.5

Alternative hypothesis HA : p 6= 0.5

Type I error Rejecting H0 when it is true

Significance level P (Type I error) = P (Reject H0|H0) = α

Type II error Accepting H0 when it is false

P (Type II error) = P (Accept H0|HA) = β

Power 1− β

Goal: Low α and high 1− β.
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Example: Let X1, X2, ..., Xn be an i.i.d. sample from a normal with known

variance σ2 and unknown mean µ. Consider two simple hypotheses :

H0 : µ = µ0

HA : µ = µ1 (µ1 > µ0)

Under H0, the null distribution likelihood is

f0 ∝
n
∏

i=1

exp

[

− 1

2σ2
(Xi − µ0)

2

]

= exp

[

− 1

2σ2

n
∑

i=1

(Xi − µ0)
2

]

Under HA, the likelihood is

f1 ∝ exp

[

− 1

2σ2

n
∑

i=1

(Xi − µ1)
2

]

Which hypothesis is more likely?

Neyman-Pearson Lemma : Among all possible tests achieving significance level

≤ α, the test based on likelihood ratio maximizes the power.
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Likelihood ratio test : f0

f1
≤ c =⇒ Reject H0.

f0

f1
= exp

[ n

2σ2

[

2X̄(µ0 − µ1) + µ2
1 − µ2

0

]

]

≤ c

α = P (reject H0|H0) = P (f0 ≤ cf1|H0)

Equivalently, reject H0 if the sample mean X̄ is too large:

Reject H0 if X̄ ≥ x0, and

P (X̄ ≥ x0|H0) = α.
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Under H0: X̄ ∼ N
(

µ0, σ
2/n
)

α =P (X̄ ≥ x0|H0)

=⇒ x0 = µ0 + zα
σ√
n

zα is the upper α point of the standard normal:

P (Z ≥ zα) = α, where Z ∼ N(0, 1). z0.05 = 1.645, z0.025 = 1.960

Therefore, the test rejects H0 if X̄ ≥ µ0 + zα
σ√
n

.
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P-Value

Definition: The p-value is the smallest significance level at which the null

hypothesis would be rejected.

The smaller the p-value, the stronger the evidence against the null hypothesis.

In a sense, calculating the p-value is more sensible than specifying (often

arbitrarily) the level of significance α.
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Composite Test

Neyman-Pearson Lemma requires that both hypotheses be simple. However,

most real-situations require composite hypothesis.

Examples:

H0 : µ = µ0

H1 : µ > µ0

H0 : µ < µ0

H1 : µ > µ0

H0 : µ = µ0

H1 : µ 6= µ0
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Generalized Likelihood Ratio Test

Likelihood ratio test :

A simple hypothesis versus a simple hypothesis. Optimal. Very limited use.

Generalized likelihood ratio test: The one we have used

Composite hypotheses. Sub-optimal and widely-used.

Play the same role as MLE in parameter estimation.
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Assume a sample X1, ... ,Xn from a distribution with unknown parameter θ.

H0 : θ ∈ ω0

HA : θ ∈ ω1

Let Ω = ω0 ∪ ω1. The test statistic

Λ =

max
θ∈ω0

lik(θ)

max
θ∈Ω

lik(θ)

Reject H0 if Λ ≤ λ0, such that

P (Λ ≤ λ0|H0) = α
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Theorem: Under some smoothness conditions on the probability density of mass

functions, the null distribution of−2 log Λ tends to a chi-square distribution with

degrees of freedom equal to dimΩ− dimω0, as the sample size tends to infinity.

dimΩ = number of free parameters under Ω

dimω0 = number of free parameters under ω0.
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The Odds and Odds Ratio

Consider a 2× 2 table: πij , i, j ∈ {1, 2}. Define

Odds = θ =
Odds1

Odds2
=

π11/π12

π21/π22

It is called “odds” because we (by convention) treat π11 and π21 as “success”

probabilities.

The ratio θ provides another measure of the association of the contingency table.

When the counts are independent, then we would expect that

odds1 = odds2, i.e., θ = 1

A natural estimate of θ is just

θ̂ =
n11/n12

n21/n22
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An Example of Odds Ratio

Cross Classification of Aspirin Use and Myocardinal Infarct ion

Group Infarction YES Infarction NO Total

Placebo 189 10845 11034

Aspirin 104 10933 11037

Empirical estimates:

Odds1 = 189/10845 = 0.0174, Odds2 = 104/10933 = 0.0095,

Odds Ratio = 0.0174/0.0095 = 1.832

Should we reject the null hypothesis of independence? Need to do a test, either

the (generalized) likelihood ratio test (for large samples) or Fisher’s exact test (for

small samples).
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Small Sample Test: Fisher’s Exact Test

Both G2 test and X2 test make the large-sample assumption because they rely

on the asymptotic result. When the sample size is small, one might be able to

conduct the “exact” test.

Consider a 2× 2 table: nij , i, j ∈ {1, 2}.
Under the null hypothesis H0 that the cell counts are independent, the probability

is

Pr (n11) =

(

n1+

n11

)(

n2+

n+1−n11

)

(

n
n+1

) , 0 ≤ n11 ≤ min(n1+, n+1)

How do we understand this probability?
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Fisher’s Tea Taster

Fisher’s Tea Tasting Experiment

Poured First Milk Tea Total

Milk 3 1 4

Tea 1 3 4

Total 4 4

To test a colleague’s claim that she could distinguish whether milk or tea was

added to the cup first, Fisher designed this test by asking her to drink 8 cups of

teas, four cups had milk added first and the other four had tea added first.
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Fisher’s Tea Taster

In this example, the test is one-sided (for positive association)

H0 : θ = 1

HA : θ > 1

Under H0, the probability of n11 is

Pr (n11) =

(

4
n11

)(

4
4−n11

)

(

8
4

)

and the corresponding (one-sided) p-value is

4
∑

i=n11

Pr (i)



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 69

Fisher’s Tea Taster

Fisher’s Tea Tasting Experiment

n11 Pr (n11) one-sided p-value X2

0 0.014 1.000 8.0

1 0.229 0.986 2.0

2 0.514 0.757 0.0

3 0.229 0.243 2.0

4 0.014 0.014 8.0

One potential issue is that the values are very much discontinuous, the nature of

the small sample problem. However, when the sample size is large, another issue

arises. What is it?
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More General Contingency Table Problems

It is actually much more common that the underlying probabilities of the cells are

functions of some parameters.

For example, a multinomial distribution

(n1, n2, ..., nc) = multinomial (p1, p2, ..., pn)

where

pi = pi(θ), i = 1, 2, ..., c, and

c
∑

i=1

pi(θ) = 1

θ can be one scalar parameter, or a vector of parameters.
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Hardy-Weinberg Equilibrium

If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur in a

population with frequencies:

π1 = (1− θ)2, π2 = 2θ(1− θ), π3 = θ2,

respectively. Suppose we observe sample counts n1, n2, and n3, with total = n.

The task is to estimate θ (e.g., using MLE).
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The MLE solution: The log likelihood can be written as

l(θ) =

3
∑

i=1

ni log πi

=n1 log(1− θ)2 + n2 log 2θ(1− θ) + n3 log θ2

∝2n1 log(1− θ) + n2 log θ + n2 log(1− θ) + 2n3 log θ

=(2n1 + n2) log(1− θ) + (n2 + 2n3) log θ

Taking the first derivative

∂l(θ)

∂θ
= −2n1 + n2

1− θ
+

n2 + 2n3

θ
= 0

=⇒ θ̂ =
2n3 + n2

2n

It can be shown by large-sample theory that V ar(θ̂) = θ(1−θ)
2n .
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Testing The Hardy-Weinberg Equilibrium Model

In an experiment, the cell counts are 342, 500, and 187 (n = 1029).

Using MLE, we estimate θ̂ = 2n3+n2

2n = 0.4246842.

The expected (estimated) counts are 340.6, 502.8, and 185.6, respectively.

Now we want to test H0: the data follow the Hardy-Weinberg Model.
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Generalized Likelihood Ratio Tests for Multinomial Distri bution

Goodness of fit : Assume the multinomial probabilities pi are specified by

H0 : p = p(θ), θ ∈ ω0

where θ is a (vector of) parameter(s) to be estimated.

We need to know whether the model p(θ) is good or not, according to the

observed data (cell counts).

We also need an alternative hypothesis. A common choice of Ω would be

Ω = {pi, i = 1, 2, ..., m|pi ≥ 0,

m
∑

i=1

pi = 1}
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Λ =
max
p∈ω0

lik(p)

max
p∈Ω

lik(p)

=

(

n
x1,x2,...,xm

)

p1(θ̂)
x1 ...pm(θ̂)xm

(

n
x1,x2,...,xm

)

p̂x1
1 ...p̂xm

m

=
m
∏

i=1

(

pi(θ̂)

p̂i

)xi

θ̂: the MLE under ω0 p̂i = xi

n : the MLE under Ω.

Λ =
m
∏

i=1

(

pi(θ̂)

p̂i

)np̂i

, −2 log Λ = −2n
m
∑

i=1

p̂i log

(

pi(θ̂)

p̂i

)
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−2 log Λ =− 2n
m
∑

i=1

p̂i log

(

pi(θ̂)

p̂i

)

=2

m
∑

i=1

np̂i log

(

np̂i

npi(θ̂)

)

=2
m
∑

i=1

Oi log
Oi

Ei

Oi = np̂i = xi : the observed counts,

Ei = npi(θ̂) : the expected counts

−2 log Λ is asymptotically χ2
s .

The degrees of freedom s = dimΩ− dimω0 = (m− 1)− k.

k = length of the vector θ = number of parameters in the model.
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Continue the Example of Testing the Hardy-Weinberg Model

Using the count data, we can compute two test statistics to be

G2 = 0.032499, X2 = 0.0325041

Both G2 and X2 are asymptotically χ2
s where

s = (m− 1)− k = (3− 1)− 1 = 1

p-values

For G2, p-value = 0.85694. For X2, p-value = 0.85682

Very large p-values indicate that we should not reject H0.

In other words, the model is very good.
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Why Modeling the Data?

• Scientific purposes.

• Smaller number of parameters.

• Smaller errors (variance) if the model is correct (or close t o be correct).

The Hardy-Weinberg (3-cell) model was directly drived from science. In many

cases, we have to derive the models from the observations. Logistic regression

is a popular and flexible model for categorical responses.
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Logistic Regression

Logistic regression is one of the most widely used statistical tools for predicting

cateogrical outcomes.

General setup for binary logistic regression

n observations: {xi, yi}, i = 1 to n. xi can be a vector.

yi ∈ {0, 1}. For example, “1” = “YES” and “0” = “NO”.

Define

p(xi) = Pr (yi = 1|xi) = π(xi)

i.e., Pr (yi = 0|xi) = 1− p(xi).
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The major assumption of logistic regression

log
p(xi)

1− p(xi)
= β0 + β1xi,1 + ... + βpxi,p =

p
∑

j=0

βjxi,j .

Here, we treat xi,0 = 1. We can also use vector notation to write

log
p(xi; β)

1− p(xi; β)
= xiβ.

Here, we view xi as a row-vector and β as a column-vector.
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The model in vector notation

p(xi; β) =
exiβ

1 + exiβ
, 1− p(xi; β) =

1

1 + exiβ
,

Log likelihood for the ith observation:

li(β|xi) =(1− yi) log [1− p(xi; β)] + yi log p(xi; β)

=







log p(xi; β) if yi = 1

log [1− p(xi; β)] if yi = 0

To understand this, consider binomial with only one sample binomial(1, p(xi))

(i.e., Bernouli). When yi = 1, the log likelihood is log p(xi) and when yi = 0,

the log likelihood is log (1− p(xi)). These two formulas can be written into one.
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Joint log likelihood for n observations:

l(β|x1, ..., xn) =

n
∑

i=1

li(β|xi)

=
n
∑

i=1

(1− yi) log [1− p(xi; β)] + yi log p(xi; β)

=
n
∑

i=1

yi log
p(xi; β)

1− p(xi; β)
+ log [1− p(xi; β)]

=

n
∑

i=1

yixiβ − log
(

1 + exiβ
)

The remaining task is to solve the optimization problem by MLE.
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The plan

• Solve logistic regression with only variable (one or two coefficients).

• Data examples of logistic regression.

• Intepret results of logistic regression.

• Solve general logistic regression.

• Logistic regression with regularization.
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Logistic Regression with Only One Variable

Basic assumption

logit(π(xi)) = log
p(xi; β)

1− p(xi; β)
= β0 + β1xi

Joint Log likelihood

l(β|x1, ..., xn) =
n
∑

i=1

[

yixiβ − log
(

1 + eβ0+xiβ1
)]

Next, we solve the optmization problem for maximizing the joint likelihood, given

the data.
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First derivatives

∂l(β)

∂β0
=

n
∑

i=1

yi − p(xi),
∂l(β)

∂β1
=

n
∑

i=1

xi (yi − p(xi)) ,

Second derivatives

∂2l(β)

∂β2
0

= −
n
∑

i=1

p(xi) (1− p(xi)) ,

∂2l(β)

∂β2
1

= −
n
∑

i=1

x2
i p(xi) (1− p(xi)) ,

∂2l(β)

∂β0β1
= −

n
∑

i=1

xip(xi) (1− p(xi))

Solve the MLE by Newton’s Method or steepest descent (two-dim problem).
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Logistic Regression without Intercept ( β0 = 0)

The simplified model

logit(π(xi)) = log
p(xi)

1− p(xi)
= βxi

Equivalently,

p(xi) =
eβxi

1 + eβxi
= π(xi), 1− p(xi) =

1

1 + eβxi
,

Joint log likelihood for n observations:

l(β|x1, ..., xn) =
n
∑

i=1

xiyiβ − log
(

1 + eβxi
)
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First derivative

l′ (β) =

n
∑

i=1

xi (yi − p(xi)) ,

Second derivative

l′′ (β) = −
n
∑

i=1

x2
i p(xi) (1− p(xi)) ,

Newton’s Method updating formula

βt+1 = βt −
l′(βt)

l′′(βt)

Steepest descent (in fact ascent ) updating formula

βt+1 = βt+∆l′(βt)
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A Numerical Example of Logistic Regression

Data

x = {8, 14,−7, 6, 5, 6,−5, 1, 0,−17}
y = {1, 1, 0, 0, 1, 0, 1, 0, 0, 0}
Log likelihood function

−1 −0.5 0 0.5 1
−60

−40

−20

0

β

l(β
)
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Steepest descent is quite sensitive to the step size ∆.

Too large ∆ leads to oscillation.
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Newton’s Method is sensitive to the starting point β0. May not converge at all.

The starting point (mostly) only affects computing time of steepest descent.

——————

In general, with multiple variables, we need to use the matrix formulation, which in

fact is easier to implement in matlab.
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Newon’s Method for Logistic Regression with β0 and β1

Analogous to the one variable case, the Newton’s update formula is

βnew = βold −
[

(

∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β

]

βold

where β =





β0

β1



,

∂l(β)

∂β
=

[

∑

n

i=1
yi − p(xi)

∑

n

i=1
xi (yi − p(xi))

]

=













1 x1

1 x2

...

1 xn













T 











y1 − p(x1)

y2 − p(x2)

...

yn − p(xn)













= XT (y − p)
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(

∂2l(β)

∂β∂βT

)

=





−∑n
i=1 p(xi) (1− p(xi)) −∑n

i=1 xip(xi) (1− p(xi))

−∑n
i=1 xip(xi) (1− p(xi)) −∑n

i=1 x2
i p(xi) (1− p(xi))





=−XTWX

W =















p(x1)(1− p(x1)) 0 0... 0

0 p(x2)(1− p(x2)) 0... 0

...

0 0 0... p(xn)(1− p(xn))
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Multivariate Logistic Regression Solution in Matrix Form

Newton’ update formula

βnew = βold −
[

(

∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β

]

βold

where, in a matrix form

∂l(β)

∂β
=

n
∑

i=1

xi (yi − p(xi; β)) = XT(y − p)

∂2l(β)

∂β∂βT
= −

n
∑

i=1

xT
ixip(xi; β) (1− p(xi; β)) = −XTWX

We can write the update formula in a matrix form

βnew =
[

XTWX
]−1

XTWz,

z = Xβold + W−1(y − p)
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X =















1 x1,1 x1,2 ... x1,p

1 x2,1 x2,2 ... x2,p

...

1 xn,1 xn,2 ... xn,p















∈ R
n×(p+1)

W =















p1(1− p1) 0 0 ... 0

0 p2(1− p2) 0 ... 0

...

0 0 0 ... pn(1− pn)















∈ R
n×n

where pi = p(xi; β
old).
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Derivation

βnew =βold −
[

(

∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β

]

βold

=βold +
[

XTWX
]−1

XT(y − p)

=
[

XTWX
]−1 [

XTWX
]

βold +
[

XTWX
]−1

XT(y − p)

=
[

XTWX
]−1

XTW
(

Xβold + W−1(y − p)
)

=
[

XTWX
]−1

XTWz

Note that
[

XTWX
]−1

XTWz looks a lot like (weighted) least square.

Two major practical issues:

• The inverse may not (usually does not) exist, especially with large datasets.

• Newton update steps may be too agressive and lead to divergence.
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Fitting Logistic Regression with a Learning Rate

At time t, update each coefficient vector:

βt =β(t−1) + ν
[

XTWX
]−1

XT(y − p)
∣

∣

∣

t−1

where

W = diag [pi(1− pi)]
n
i=1

The magic parameter ν can be viewed as the learning rate to help make sure that

the procedure converges. Practically, it is often set to be ν = 0.1.
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Revisit The Simple Example with Only One β

Data

x = {8, 14,−7, 6, 5, 6,−5, 1, 0,−17}
y = {1, 1, 0, 0, 1, 0, 1, 0, 0, 0}
Log likelihood function
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−40

−20
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Newton’s Method with Learning Rate ν = 1
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When initial β0 = 0.32, the method coverges. When β0 = 0.33, it does not

converge.
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Newton’s Method with Learning Rate ν = 0.1
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Fitting Logistic Regression With Regularization

The almost correct update formula:

βt =β(t−1) + ν
[

XTWX + λI
]−1

XT(y − p)
∣

∣

∣

t−1

Adding the regularization parameter λ usually improves the numerical stability

and some times may even result in better test errors.

There are also good statsitical interpretations.
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Fitting Logistic Regression With Regularization

The update formula:

βt =β(t−1) + ν
[

XTWX + λI
]−1 [

XT(y − p)− λβ
]

∣

∣

∣

t−1

To understand the formula, consider the following modified (regularized) likelihood

function:

l(β) =

n
∑

i=1

{yi log pi + (1− yi) log(1− pi)} −
λ

2

p
∑

j=0

β2
j
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Newton’s Method with No Regularization λ = 0 (ν = 0.1)
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Newton’s Method with Regularization λ = 1 (ν = 0.1)
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Newton’s Method with Regularization λ = 1 (ν = 0.1)
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Crab Data Analysis (Table 3.2)

Color (C) Spine (S) Width (W, cm) Weight (Wt, Kg) # Saterlites (Sa)

2 3 28.3 3.05 8

3 3 22.5 1.55 0

1 1 26.0 2.30 9

3 3 24.8 2.10 0

3 3 26.0 2.60 4

2 3 23.8 2.10 0

1 1 26.5 2.35 0

3 2 24.7 1.90 0

It is natural to view color as (norminal) cateogrical variable and weight and width

as numerical variables. The distinction, however, is often not clear in practice.
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Logistic regression for Sa classification using width only

y = 1 if Sa > 0, y = 0 if Sa = 0. Only one variable x = W . The task is to

compute Pr (y = 1|x) and classify the data using a simple classification rule:

ŷi = 1, if p̂i > 0.5

Using own matlab code, the fitted model is

p̂(xi) =
e−12.3108+0.497xi

1 + e−12.3108+0.497xi

If we choose not to include the intercept term, the fitted model becomes

p̂(xi) =
e0.02458xi

1 + e0.02458xi
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Training mis-classification errors
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Training log likelihood
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Logistic regression for Sa classification using S, W, and Wt

Using own matlab code, the fitted model is

p̂(S, W, Wt) =
e−9.4684+0.0495S+0.3054W+0.8447Wt

1 + e−9.4684+0.0495S+0.3054W+0.8447Wt
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Training mis-classification errors
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Training log likelihood
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Multi-Class Logistic Regression

Data: {xi, yi}ni=1, xi ∈ R
n×p, yi ∈ {0, 1, 2, ..., K − 1}.

Probability model

pi,k = Pr {yi = k|xi} , k = 0, 1, ..., K − 1,

K−1
∑

k=0

pk = 1, (only K − 1 degrees of freedom).

Label assignment

ŷi|xi = argmax
k

p̂i,k
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Multi-Class Example: USPS ZipCode Recognition
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This task can be cast (simplified) as a K = 10-class classification problem.
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Multinomial Logit Probability Model

pi,k =
eFi,k

∑K−1
s=0 eFi,s

where Fi,k = Fk(xi) is the function to be learned from the data.

Linear logistic regression : Fi,k = Fk(xi) = xiβk

Note that, βk = [βk,0, βk,1, ..., βk,p]
T
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Multinomial Maximum Likelihood

Mutlinomial likelihood: Suppose yi = k,

Lik ∝ p0
i,0 × ...× pi,k

1 × ...× p0
i,K−1 = pi,k

log likelihood:

li = log pi,k, if yi = k

Total log-likelihood in a double summation form:

l(β) =
n
∑

i=1

li =
n
∑

i=1

{

K−1
∑

k=0

ri,k log pi,k

}

ri,k =







1 if yi = k

0 otherwise



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 116

Derivatives of Multi-Class Log-likelihood

The first derivative :

∂li
∂Fi,k

= (ri,k − pi,k)

Proof:

∂pi,k

∂Fi,k
=

[

∑K−1
s=0 eFi,s

]

eFi,k − e2Fi,k

[

∑K−1
s=0 eFi,s

]2 = pi,k (1− pi,k)

∂pi,k

∂Fi,t
=

−eFi,keFi,t

[

∑K−1
s=0 eFi,s

]2 = −pi,kpi,t
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∂li
∂Fi,k

=
K−1
∑

s=0

ri,s
1

pi,s

∂pi,s

∂Fi,k
= ri,k

1

pi,k
pi,k(1− pi,k) +

∑

s 6=k

ri,s
1

pi,s

∂pi,s

∂Fi,k

=ri,k(1− pi,k)−
∑

s 6=k

ri,spi,k = ri,k −
K−1
∑

s=0

ri,spi,k = ri,k − pi,k�

The second derivatives :

∂2li
∂F 2

i,k

= −pi,k (1− pi,k) ,

∂2li
∂Fi,kFi,s

= −pi,kpi,s



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 118

Multi-class logistic regression can be fairly complicated. Here, we introduce a

simpler approach, which does not seem to explicitly appear in common textbooks.

Conceptually, we fit K binary classification problems (one vs rest) at each

iteration. That is, at each iteration, we update βk seperately for each class. At the

end of each iteration, we jointly update the probabilities pi,k = exiβk
∑K−1

s=0 exiβs
.
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A Simple Implementation for Multi-Class Logistic Regressi on

At time t, update each coefficient vector:

βt

k
=β

(t−1)
k

+ ν
[

XTWkX
]−1

XT(rk − pk)
∣

∣

∣

t−1

where

rk = [r1,k, r2,k, ..., rn,k]T

pk = [p1,k, p2,k, ..., pn,k]
T

Wk = diag [pi,k(1− pi,k)]
n
i=1

Then update pk,Wk for the next iteration.

Again, the magic parameter ν can be viewed as the learning rate to help make

sure that the procedure converges. Practically, it is often set to be ν = 0.1.
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Logistic Regression With L2 Regularization

Total log-likelihood in a double summation form:

l(β) =
n
∑

i=1

{

K−1
∑

k=0

ri,k log pi,k

}

− λ

2

K−1
∑

k=0

d
∑

j=0

β2
k,j

ri,k =







1 if yi = k

0 otherwise

Let g(β) = λ
2

∑K−1
k=0

∑d
j=0 β2

k,j , then

∂g(β)

βk,j
= βk,jλ,

∂2g(β)

β2
k,j

= λ
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At time t, the updating formula becomes

βt

k
=β

(t−1)
k

+ ν
[

XTWkX + λI
]−1 [

XT(rk − pk)− λβk

]

∣

∣

∣

t−1

L2 regularization sometimes improves the numerical stability and some times

may even result in better test errors.
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Logistic Regression Results on Zip Code Data

Zip code data: 7291 training examples in 256 dimensions. 2007 test examples.
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With no regularization (λ = 0), numerical problems may occur.
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Another Example on Letter ( K = 26) Recognition

Letter dataset: 2000 training samples in 16 dimensions. 18000 testing samples.
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Revisit Crab Data as a Multi-Class Problem

Color (C) Spine (S) Width (W, cm) Weight (Wt, Kg) # Saterlites (Sa)

2 3 28.3 3.05 8

3 3 22.5 1.55 0

1 1 26.0 2.30 9

3 3 24.8 2.10 0

3 3 26.0 2.60 4

2 3 23.8 2.10 0

1 1 26.5 2.35 0

3 2 24.7 1.90 0
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It appears reasonable to treat this as a binary classification problem, given the

counts distribution and # samples. Nevertheless, it might be still interesting to

consider it as a multi-class problem.
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We consider a 6-class (0 to 5) classification problem by grouping all samples with

counts≥ 5 as class 5. Use 3 variales (S, W, Wt).
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Compared to the binary-classification problem, it seems the mis-classification

error is much higher. Why?
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Some thoughts

• Multi-class problems are usually (but not always) more difficult.

• For binary-classifiction, an error rate of 50% is very bad because a random

guess can achieve that. For K-class problem, the error rate of random

guessing would be 1− 1/K (5/6 in this example). So the results may be

actually not too bad.

• Multi-class models are more complex (in that they require more parameters)

and need more data samples. The crab dataset is very small.

• This problem may be actually ordinal classification instead of nomial, for

biological reaons.
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Dealing with Nominal Categorical Variables

It might be reasonable to consider “Color (C)” as a nominal cateogrical variable.

Then how can we include it in our logistic regression model?

The trick is simple. Suppose the color variable take four different values. We add

four binary variable (i.e., only taking values in {0, 1}. For one particular sample,

only one of the four variables will take value 1.

This is basically the same trick as we expand the y in multi-class logistic

regression.
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Adding Color as Four Binary Variables

C1 C2 C3 C4 S W Wt Sa

0 1 0 0 3 28.3 3.05 8

0 0 1 0 3 22.5 1.55 0

1 0 0 0 1 26.0 2.30 9

0 0 1 0 3 24.8 2.10 0

0 0 1 0 3 26.0 2.60 4

0 1 0 0 3 23.8 2.10 0

1 0 0 0 1 26.5 2.35 0

0 0 1 0 2 24.7 1.90 0
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Adding the color variable noticeably reduced the (binary) classification error.
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Here to minimize the effect of regularization, only λ = 10−10 is used, just

enough to ensure numerical stability.

Logistic regression does not directly minimize mis-classification errors. The log

likelihood probably better illustrates the effect of adding the color variable.
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Adding the color variable noticeably improved the log likelihood.
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Adding Pairwise (Interaction) Variables

Feature expansion is a common trick to boost the performance. For example,

(x1, x2, x3, ..., xp) =⇒
(x1, x2, x3, ..., xp, x

2
1, x1x2, ..., x1xp, x

2
2, x2x3, ..., x2xp, ..., x

2
p)

In other words, the original p variables can be expanded to be

p +
p(p + 1)

2
variables

The expansion often helps, but not always. In general, when the number of

examples n is large, feature expansion usually helps.



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 137

Adding Pairwise Interactions on Crab Data

Adding all pairwise (interaction) variables only help slightly in terms of the log

likelihood (red denotes using only the original variables).
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Simplify Label Assignments

Recall label assignment in logistic regression:

ŷi|xi = argmax
k

p̂i,k

and the probability model of logistic regression:

pi,k =
exiβk

∑K−1
s=0 exiβs

It is equivalent to assign labels directly by

ŷi|xi = argmax
k

xiβ̂k

This raises an interesting question: maybe we don’t need a probability model for

the purpose of classification? For example, a linear regression may be sufficient?
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Linear Regression and Its Applications in Classification

Both linear regression and logistic regression are examples of

Generalized Linear Models (GLM) .

We first review linear regression and then discuss how to use it for (multi-class)

classification.
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Review Linear Regression

Given data {xi, yi}ni=1, where xi is a p-dimensional vector and yi is a scalar

(not limited to be categories).

We again construct the data matrix

X =















1 x1,1 x1,2 ... x1,p

1 x2,1 x2,2 ... x2,p

...

1 xn,1 xn,2 ... xn,p















, y =















y1

y2

...

yn















The data model is

y = X× β

β (a vector of length p + 1) is obtained by minimizing the mean square errors

(equivalent to maximizing the joint likelihood under the normal distribution model).
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Linear Regression Estimation by Least Square

The idea is to minimize the mean square errors

MSE(β) =

n
∑

i=1

|yi − xiβ|2 = (Y −Xβ)
T
(Y −Xβ)

We can find the optimal β by setting the first derivative to be zero

∂MSE(β)

β
= XT (Y −Xβ) = 0

=⇒XTY = XTXβ

=⇒β = (XTX)−1XTY

Don’t worry much about how to do matrix derivatives. The trick is to view this

simply as a scalar derivative but we need to manipulate the order (and add

transposes) to get the dimensions correct.
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Ridge Regression

Similar to l2-regularized logistic regression, we can add a regularization

parameter

β = (XTX + λI)−1XTY

which is known as ridge regression .

Adding regularization not only improves the numerical stability but also often

increases the test accuracy.
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Linear Regression for Classification

For binary classification, i.e., yi ∈ {0, 1}, we can simply treat yi as numerical

response and fit a linear regression. To obtain the classification result, we can

simply use ŷ = 0.5 as the classification threshold.

Multi-class classification (with K classes) is more interesting. We can use exactly

the same trick as in multi-class logistic regression by first expanding the yi into a

vector of length K with only one entry being 1 and then fitting K binary linear

regressions simultaneously and using the location of the maximum fitted value as

the class label prediction. Since you have completed the homework in multi-class

logistic regression, this idea should be straightforward now. Also see sample

code.
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Mis-Classification Errors on Zipcode Data
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• This is essentially the first iteration of multi-class logistic regression. Clearly,

the results are not as good as logistic regression with many iterations.

• Adding regularization (λ) slightly increases the training errors but decreases

the testing errors at certain range.
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Linear Regression Classification on Crab Data

Binary classification. 50% of the data points are used for training and the rest for

testing. Three models are compared:

• Model using S, W, and Wt.

• Model using the above three as well as colors.

• Model using all four plus all pairwise interactions.

Both linear regression and logistic regressions are experimented. For logistic

regression, we use ν = 0.1 and only report the errors at the 100th iterations
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Linear Regression
Logistic Regression

Linear regression and logistic regression produce almost the same results.

Regularization does not appear to be helpful in this example.
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Linear Regression
Logistic Regression

Linear regression seems to be even slightly better

Regularization still does not appear to be helpful.
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Linear Regression
Logistic Regression

Now logistic regression seems to be slightly better

Regularization really helps. (Why?)
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Limitations of Using Linear Regression for Classification

• For many datasets, the classification accuracies of using linear regressions

are actually quite similar to using logistic regressions, especially when the

datasets are “not so good.”

• However, for many “good” datasets (such as zip code data), logistic

regressions may have some noticeable advantages.

• Linear regression does not (directly) provide an probabilistic interpretations of

the classification results, which may be needed in many applications, for

example, learning to rank using classification.
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Poisson Log-Linear Model

Revisit the crab data. It appears very natural to model the Sa counts as a

poisson random variable, which may be parameterized by a linear model.

Color (C) Spine (S) Width (W, cm) Weight (Wt, Kg) # Saterlites (Sa)

2 3 28.3 3.05 8

3 3 22.5 1.55 0

1 1 26.0 2.30 9

3 3 24.8 2.10 0

3 3 26.0 2.60 4

2 3 23.8 2.10 0

1 1 26.5 2.35 0

3 2 24.7 1.90 0
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Poisson Distribution

Denote Y ∼ Poisson(µ). The probability mass function (PMF) is

Pr (Y = y) =
e−µuy

y!
, y = 0, 1, 2, ...

E(Y ) = µ, V ar(Y ) = µ

One drawback of the Poisson model is that its variance is the same as the mean

which often contradicts real data observations.
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Fitting Poisson Distribution

Given n observations, yi, i = 1 to n, the MLE of µ is simply the sample mean:

µ̂ =
1

n

n
∑

i=1

yi

Observed counts Fitted counts
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No need to perform any test. It is obviously not a good fit.
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Linear Regression for Predicting Counts

Maybe we can simply model

yi ∼ N(µi, σ
2)

µi = xiβ = β0 + xi,1β1 + ... + xi,pβp

i.e., µi is the mean of a normal distribution N(µi, σ
2).

This way, we can easily predict the counts by

β̂ =
(

XTX
)−1

XTy

ŷ = Xβ̂
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Histograms of the predictions of counts by using linear regression using only the

width. The sum of square error (SE) is

SE =
n
∑

i=1

(ŷi − yi)
2

= 1.5079× 103
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Clearly, linear regression can not possibly be the best approach.
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Poisson Regression Model

Assumption:

yi ∼ Poisson(µi)

log µi = xiβ = β0 + xi,1β1 + ... + xi,pβp

Note that this is very different from assuming that the logarithms of the counts

follow a linear regression model. Why?
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Clearly, this looks better than the histogram from linear regression.

However, the square error SE =
∑n

i=1 (ŷi − yi)
2 = 1.5373× 103 is actually

larger than the SE from linear regression. Why is it not too surprising?
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Comparing Fitted Counts

y ŷ Linear ŷ Poisson

8.0000 3.9344 3.8103

0 0.9916 1.4714

9.0000 2.7674 2.6127

0 2.1586 2.1459

4.0000 2.7674 2.6127

0 1.6512 1.8212

0 3.0211 2.8361

0 2.1079 2.1110

0 1.6005 1.7916

0 2.5645 2.4468

Need to see more rows to understand the differences...
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Now we use 3 variables, S, W, Wt, to fit linear regression and Poisson regression.
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Histograms by Poisson Regression

Clearly, Poisson regression looks better, although SE values are 1.4696× 103

and 1.5343× 103, respectively, for linear regression and Poisson regression.
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Fitting Poisson Regression

Log Likelihood:

li = −µi + yi log µi = −exiβ + yixiβ

First Derivatives:

∂li
∂β

= (yi − µi)xT
i
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Given n observations, the log likelihood is l =
∑n

i=1 li.

First Derivatives (matrix form) :

∂l

∂β
= XT (y − µ)

Second Derivatives (matrix form) :

∂2l

∂ββT
= −XTWX

where W is the diagonal matrix of µ.

They look very similar to logistic regression.
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Newton’s Method for Solving Poisson Regression Model

βnew = βold −
[

(

∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β

]

βold

βt =β(t−1) + ν
[

XTWX
]−1 [

XT(y − µ)
]

∣

∣

∣

t−1

where again ν (e.g., 0.1) is a shrinkage parameter which helps the numerical

stability.
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Why “Log Linear”?

Poisson Model Without Log:

yi ∼ Poisson(µi)

µi = xiβ = β0 + xi,1β1 + ... + xi,pβp

Its log likelihood and first derivative (assuming only one β) are:

li = −µi + yi log µi = −xiβ + yi log (xiβ)

∂li
∂β

= −xi +
yixi

xiβ

Considering the second derivatives and more than one β, using this model is

almost like “looking for troubles.” There is also another obvious issue with this

model. What is it?

The reason why “Log Linear” will be more clear under the GLM framework.
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Summary of Models

Given a dataset {xi, yi}ni=1, so far, we have seen three different models:

• Linear Regression −∞ < yi <∞,

yi ∼ N
(

µi, σ
2
)

, µi = xiβ

• Poisson Regression yi ∈ {0, 1, 2, ..., },

yi ∼ Poisson (µi) , log µi = xiβ

• Binary Logistic Regression yi ∈ {0, 1},

yi ∼ Binomial (pi) , log
pi

1− pi
= xiβ
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Quotes from George E. P. Box

• Essentially, all models are wrong, but some are useful.

• Remember that all models are wrong; the practical question i s how

wrong do they have to be to not be useful.
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Generalized Linear Models (GLM)

All the models we have seen so far belong to the family of generalized linear

models (GLM). In general, a GLM consists of three components:

• The random component yi ∼ f(yi; θi).

f(yi; θi) = a(θi)b(yi)e
yiQ(θi)

• The systematic component ηi = xiβ =
∑p

j=0 xi,jβj .

(This may be replaced by a more flexible model.)

• The link function ηi = g(ui), where ui = E(yi).

g(u) is a monotonic function. If g(u) = u, it is called “identity link”.
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Revisit Poisson Log Linear Model Under GLM

For GLM,

yi ∼ f(yi; θi) = a(θi)× b(yi)× eyiQ(θi)

In this case, θi = ui,

f(yi) =
e−uiuyi

i

yi!
=
[

e−ui
]

[

1

yi

]

[

eyi log ui
]

Therefore,

a(µi) = e−ui , b(yi) =
1

yi!
, Q(µi) = log ui

And the link function

g(ui) = Q(θi) = log ui = xiβ

This is called canonical link.
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Revisit Binary Logistic Model Under GLM

For GLM,

yi ∼ f(yi; θi) = a(θi)× b(yi)× eyiQ(θi)

In this case, θi = pi,

f(yi) = pyi

i (1− pi)
1−yi = [(1− pi)] [1]

[

e
yi log

pi
1−pi

]

Therefore,

a(pi) = 1− pi, b(yi) = 1, Q(pi) = log
pi

1− pi

And the link function

g(pi) = Q(θi) = log
pi

1− pi
= xiβ

This is again a canonical link.
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Revisit Linear Regression Model Under GLM (with σ2 = 1)

For GLM,

yi ∼ f(yi; θi) = a(θi)× b(yi)× eyiQ(θi)

In this case, θi = µi (and σ2 = 1 by assumption)

f(yi) = e−
(yi−µi)

2

2 =

[

e−
µ2

i
2

] [

e−
y2

i
2

]

[eyiµi ]

Therefore,

a(µi) = e−
µ2

i
2 , b(yi) = e−

y2
i
2 , Q(µi) = µi

And the link function

g(ui) = Q(θi) = µi = xiβ

This is again a canonical link and is in fact an identity link.
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Statistical Inference

After we have fitted a GLM (e.g., logistic regression) and estimated the

coefficients β̂, we can ask many questions, such as

• Which βj is more important?

• Is βj significantly different from 0?

• What is the (joint) distribution of β?

To understand these questions, it is crucial to learn some theory of the MLE,

because fitting a GLM is finding the MLE for a particular distribution.
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Revisit the Maximum Likelihood Estimation (MLE)

Observations xi, i = 1 to n, are i.i.d. samples from a distribution with probability

density function fX (x; θ1, θ2, ..., θk),

where θj , j = 1 to k, are parameters to be estimated.

The maximum likelihood estimator seeks the θ to maximize the joint likelihood

θ̂ = argmax
θ

n
∏

i=1

fX(xi; θ)

Or, equivalently, to maximize the log joint likelihood

θ̂ = argmax
θ

n
∑

i=1

log fX(xi; θ) = argmax
θ

l(θ; x)

where l(θ; x) =
∑n

i=1 log fX(xi; θ) is the joint log likelihood function.
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Large Sample Theory for MLE

Large sample theory says, as n→∞, θ̂ is asymptotically unbiased and normal.

θ̂ ∼ N

(

θ,
1

nI(θ)

)

, approximately

I(θ) is the Fisher Information of θ:

I(θ) = −E

[

∂2

∂θ2
log f(X |θ)

]

= −E (l′′(θ))

Note that it is also true that

I(θ) = E (l′(θ))
2

but you don’t have to worry about the proof.



BTRY6030/STSCI4110/ILRST4110 Spring, 2012 Department of Statistical Science Cornell University 172

Intuition About the Asymptotic Distributions & Variances o f MLE

The MLE θ̂ is the solution to the MLE equation l′(θ̂) = 0.

The Taylor expansion around the true θ

l′(θ̂) ≈ l′(θ) + (θ̂ − θ)l′′(θ)

Let l′(θ̂) = 0 (because θ̂ is the MLE solution)

(θ̂ − θ) ≈ − l′(θ)

l′′(θ)

We know that

E(−l′′(θ)) = nI(θ) = E(l′(θ))2,

E(l′(θ)) = 0. (Read the next slide if interested in the proof)
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(Don’t worry about this slide if you are not interested.)

l′(θ) =

n
∑

i=1

∂ log f(xi)

∂θ
=

n
∑

i=1

∂f(xi)
∂θ

f(xi)

E (l′(θ)) =
n
∑

i=1

E

(

∂ log f(xi)

∂θ

)

= nE

(

∂f(x)
∂θ

f(x)

)

= 0

because

E

(

∂f(x)
∂θ

f(x)

)

=

∫ ∂f(x)
∂θ

f(x)
f(x)dx =

∫

∂f(x)

∂θ
dx =

∂

∂θ

∫

f(x)dx = 0
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The heuristic trick is to approximate

θ̂ − θ ≈ l′(θ)

−l′′(θ)
≈ l′(θ)

E(−l′′(θ))
=

l′(θ)

nI(θ)

Therefore,

E(θ̂ − θ) ≈ E(l′(θ))

nI(θ)
= 0

V ar(θ̂) ≈ E(θ̂ − θ)2 ≈ E

(

l′(θ)

nI(θ)

)2

=
nI(θ)

n2I2(θ)
=

1

nI(θ)

This is why intuitively, we know that θ̂ ∼ N
(

θ, 1
nI(θ)

)

.
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Example: Normal Distribution

Given n i.i.d. samples, xi ∼ N(µ, σ2), i = 1 to n.

log fX(x; µ, σ2) = − 1

2σ2
(x− µ)2 − 1

2
log(2πσ2)

∂2 log fX(x; µ, σ2)

∂µ2
= − 1

σ2
=⇒ I(µ) =

1

σ2

Therefore, the MLE µ̂ will have asymptotic variance 1
nI(µ) = σ2

n . But in this

case, we already know that

µ̂ =
1

n

n
∑

i=1

xi ∼ N

(

µ,
σ2

n

)

In other words, the “asymptotic” variance of the MLE is in fact exact in this case.
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Example: Binomial Distribution

x ∼ Binomial(p, n): Pr (x = k) =
(

n
k

)

pk(1− p)n−k

Log likelihood and Fisher Information:

l(p) = k log p + (n− k) log(1− p)

l′(p) =
k

p
− n− k

1− p
=⇒ MLE p̂ =

k

n

l′′(p) = − k

p2
− n− k

(1− p)2

I(p) = −E (l′′(p)) =
np

p2
+

n− np

(1− p)2
=

n

p(1− p)

That is, the asymptotic variance of the MLE p̂ is
p(1−p)

n , which is in fact again the

exact variance.
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Example: Contingency Table with Known Margins

n = n11 + n12 + n21 + n22 N = N11 + N12 + N21 + N22

22

n 11 n 12

n 21 n 2221

Ν Ν

ΝΝ

11 12

Margins: M1 = N11 + N12, M2 = N11 + N21, are known.

The (asymptotic) variance of the MLE (for N11) is

Var
(

N̂11,MLE

)

=
N/n

1
N11

+ 1
M1−N11

+ 1
M2−N11

+ 1
N−M1−M2+N11
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Derivation : The log likelihood is

l(N11) =n11 log
N11

N
+ n12 log

M1 −N11

N

+ n21 log
M2 −N11

N
+ n22 log

N −M1 −M2 + N11

N

The MLE solution is

l′(N11) =
n11

N11
− n12

M1 −N11
− n21

M2 −N11
+

n22

N −M1 −M2 + N11
= 0

The second derivative is

l′′(N11) =− n11

N2
11

− n12

N2
12

− n21

N2
21

− n22

N2
22
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The Fisher Information is thus

I(N11) =E(−l′′(N11)) =
E(n11)

N2
11

+
E(n12)

N2
12

+
E(n21)

N2
21

+
E(n22)

N2
22

=
n

N

[

1

N11
+

1

N12
+

1

N21
+

1

N22

]

Recall

E(n11) = n
N11

N
, E(n12) = n

N12

N
,

E(n21) = n
N21

N
, E(n22) = n

N22

N
,
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Asymptotic Covariance Matrix

More generally, suppose there are more than one parameters

θ = {θ1, θ2, θ3, θp}. The Fisher Information Matrix is defined as

I(θ) = E

(

− ∂2l(θ)

∂θi∂θj

)

And the asymptotic covariance matrix is

Cov(θ̂) = I−1(θ)
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Review Binary Logistic Regression Derivatives

Newton’ update formula

βnew = βold −
[

(

∂2l(β)

∂β∂βT

)−1
∂l(β)

∂β

]

βold

where, in a matrix form

∂l(β)

∂β
=

n
∑

i=1

xi (yi − p(xi; β)) = XT(y − p)

∂2l(β)

∂β∂βT
= −

n
∑

i=1

xT
ixip(xi; β) (1− p(xi; β)) = −XTWX

where W = diag{p(xi)(1− p(xi))}.
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Fisher Information and Covariance for Logistic Regression

Suppose the Newton’s iteration has reached the optimal solution (very important),

then

I(β) = E
(

XTWX
)

= XTWX

And the asymptotic covariance matrix is

Cov(β̂) = I−1(β) =
[

XTWX
]−1

In other words, the MLE estimates β̂ of the binary logistic regression parameters

are asymptotically jointly normal

N
(

β,
[

XTWX
]−1
)
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A Simple Test for Logistic Regression Coefficients

At convergence, the coefficients of logistic regression

β ∼ N
(

β,
[

XTWX
]−1
)

We can just test each coefficient separately because, asymptotically

βj ∼ N
(

βj ,
[

XTWX
]−1

jj

)

which allows us to use normal probability functions to compute the p-values.

Two caveats: (1) We need the “true” W , which is replaced by the estimated W at

the last iteration. (2) We still have to specify the true βj for the test. In general, it

makes sense to test H0 : βj = 0.
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GLM with R

> data= read.table("d:\\class\\6030Spring12\\fig\\cra b.txt");

> model = glm((data[,5]==0)˜data$V2+data$V3+data$V4,fa mily=’binomial’);

> summary(model)

Call:

glm(formula = (data[, 5] == 0) ˜ data$V2 + data$V3 + data$V4,

family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7120 -0.8948 -0.5242 1.0431 2.0833

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.46885 3.56974 2.653 0.00799 **
data$V2 -0.04952 0.22094 -0.224 0.82267

data$V3 -0.30540 0.18220 -1.676 0.09370 .

data$V4 -0.84479 0.67369 -1.254 0.20985

---

Signif. codes: 0 ’ *** ’ 0.001 ’ ** ’ 0.01 ’ * ’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 192.84 on 169 degrees of freedom

AIC: 200.84

Number of Fisher Scoring iterations: 4
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R Resources

Download R executable from

http://www.r-project.org/

After launching R, type “glm.help()” for the helper screen.
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Validating the Asymptotic Theory Using Crab Data

We use 3 variables (Width, Weight, Spine, plus the intercept) from the crab data

for building the binary logistic regression model for predicting Pr (Sa > 0).

Instead of using the original labels, we generate the “true” β and sample the

labels from the generated β.

function TestLogitCrab;

load crab.txt;

X = crab(:,1:end-1); X(:,1)=1;

be_true = [-10,0.05,0.3,0.8]’ + randn(4,1) * 0.1;

The true β is fixed once generated. Once β is known, we can easily compute

p(xi) = Pr (yi = 1) =
exiβ

1 + exiβ
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Once β is fixed, we can compute p and sample the labels from

Bounoulli(p(xi)) for each xi.

We then fit the binary logistic regression using the original xi and the generated

yi to obtain β̂, which will be quite close to but not identical to the “true” β.

We then repeat the sampling procedure to create another set of labels and β̂.

By repeating this procedure 1000 times, we will be able to assess the distribution

of β̂.
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The MSEs for all βj MSEs converge with increasing iterations. However, they

deviate from the “true” variances predicted by [XTWX ]
−1

, most likely because

our sample size n = 173 is too small for the large-sample theory to be accurate.
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Experiments on the Zipcode data

2 5 3 4

5 1 0 0

Conjecture: If we display the p-values from the z-test, we might be able to see

some images similar to digits.
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Displaying the p-values as images

0 1 2 3 4

5 6 7 8 9
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Displaying 1- p-values as images

0 1 2 3 4

5 6 7 8 9
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Displaying only top (smallest) 50 p-values as images

0 1 2 3 4

5 6 7 8 9
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Plausible Interpretations: The asymptotic theory says

β ∼ N
(

β,
[

XTWX
]−1
)

Using only the marginal (diagonal) information

βj ∼ N
(

βj ,
[

XTWX
]−1

jj

)

may result in serious loss of information. In particular, when the variables are

highly correlated as in this dataset, it is not realistic to expect that only the

marginal information will be sufficient.

In other words, for zipcode data, many pixels “work together” to provide strong

discriminating powers. This is the power of team work .
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Testing Logistic Regression Using Residuals

Recall the (generalized) log-likelihood test

−2 log

(

Maximum likelihood under H0

Maximum likelihood with no restriction

)

which is asymptotically distributed as χ2
k with k determined by the degree of

freedom (red df):

df = number of parameters to be estimated without restrictions

− number of parameters to be estimated under H0

This, called deviance in the context of logistic regression and GLM, can be used

for (often more accurate) testing of the fitted models.
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Deviance Residuals for Binomial Logistic Regression

D (y; p̂) = −2 (l(p̂; y)− l(y; y))

where l(p̂; y) denotes the log-likelihood of the fitted model and l(y; y) denotes

the log-likelihood of the saturated model :

l(p̂; y) =
n
∑

i=1

(1− yi) log(1− p̂(xi)) + yi log p̂(xi)

l(y; y) =
n
∑

i=1

(1− yi) log(1− yi) + yi log yi (Note 0 log 0 = 0)

D(p̂; y) = −2

n
∑

i=1

(1− yi) log
1− p̂(xi)

1− yi
− 2

n
∑

i=1

yi log
p̂(xi)

yi
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Deviance Residual for Un-Grouped (Crab) Data

It is easy to see that l(y; y) = 0 always. Therefore, with ungrouped data, we

always have

D(p̂; y) = −2× l(p̂; y)

=− 2
n
∑

i=1

(1− yi) log(1− p̂(xi))− 2
n
∑

i=1

yi log p̂(xi)

For the crab data, the value is D(p̂; y) = 192.84 and df = 173− 4 = 169.

The p-value is 0.1009, which is an indication that this model may not be very

good.
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Multi-Class Ordinal Logistic Regression

For zip-code recognition, it is natural to treat each class (0 to 9) equally, because

in general there are indeed no orders among them (unless you are doing specific

studies in which the zip code information reveals physical locations.).

In many applications, however, there are natural orders among the class labels.

For example, in the crab data, it might be reasonable to consider # SA is ordinal

because it reflects the growth process. Also, it variable “Spine condition” may be

also ordinal.

Another example is the Webpage relevance ranking. A page with a rank of

“perfect” (4) is certainly more important than a page of “bad” (0).
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Practical Strategies

• For binary classification, it does not matter.

• In many cases, we can just ignore the orders.

• We can fit K binary logistic regressions by grouping the data according to

whether the labels are smaller or larger than L:

Pr (Label > L)

from which one can compute the individual class probabilities:

Pr (Label = L) = Pr (Label ≤ L + 1)−Pr (Label ≤ L)

One drawback is that for some data points, the fitted class probabilities may

be smaller than 0 after subtraction. But if you have lots of data, this method is

often quite effective in practice, for example, in our previous work on ranking

webpages. Do read the slides on ranking if you are interested.

• More sophisticated models...
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Have a Wonderful Summer!


