S1 Proofs

We provide proofs of the results, including

- Proposition 2 (Section S1.1),
- Theorem 1 and corollaries (Section S1.2),
- Theorem 2 and corollaries (Section S1.3),
- Propositions 3, 4, 6, and 8 (Section S1.4),
- Proposition 5 (Section S1.5),
- Theorem 3 (Section S1.6),
- Theorem 4 (Section S1.7), and
- Theorem 5 (Section S1.8).

S1.1 Proof of Proposition 2

Without loss of generality, assume that $\ell = 1$ and $0 \leq X_{1}^{(1)} < \ldots < X_{n}^{(1)} \leq 1$. The spline result for $m \geq 1$ follows easily from Proposition 1 in Mammen & van de Geer (1997).

Consider the case $m = 1$. For any $g = \sum_{j=1}^{p} g_{j}$ with $g_{1} \in \mathcal{V}^{1}$, define \tilde{g}_{1} as a piecewise constant function: $\tilde{g}_{1}(z) = g_{1}(X_{i}^{(1)})$ for $0 \leq z < X_{2}^{(1)}$, $\tilde{g}_{1}(z) = g_{1}(X_{i}^{(1)})$ for $X_{1}^{(1)} \leq z < X_{i+1}^{(1)}$, $i = 2, \ldots, n - 1$, and $\tilde{g}_{1}(z) = g_{1}(X_{n}^{(1)})$ for $X_{n}^{(1)} \leq z \leq 1$. Let $\tilde{g} = \tilde{g}_{1} + \sum_{j=2}^{p} g_{j}$. Then $\tilde{g}(X_{i}) = g(X_{i})$ for $i = 1, \ldots, n$, but $\text{TV}(\tilde{g}_{1}) \leq \text{TV}(g_{1})$ and hence $R_{n}(\tilde{g}) \leq R_{n}(g)$, which implies the desired result for $m = 1$.

Consider the case $m = 2$. For any $g = \sum_{j=1}^{p} g_{j}$ with $g_{1} \in \mathcal{V}^{2}$, define \tilde{g}_{1} such that $\tilde{g}_{1}(X_{i}^{(1)}) = g_{1}(X_{i}^{(1)})$, $i = 1, \ldots, n$, and $\tilde{g}_{1}(z)$ is linear in the intervals $[0, X_{2}^{(1)}]$, $[X_{i}^{(1)}, X_{i+1}^{(1)}]$, $i = 2, \ldots, n - 2$, and $[X_{n-1}^{(1)}, 1]$. Then $\text{TV}(\tilde{g}_{1}^{(1)}) = \sum_{i=1}^{n-1} |b_{i+1} - b_{i}|$, where b_{i} is the slope of \tilde{g}_{1} between
On the other hand, by the mean-value theorem, there exists \(z_i \in [X_i^{(1)}, X_{i+1}^{(1)}] \) such that \(g_i^{(1)}(z_i) = b_i \) for \(i = 1, \ldots, n - 1 \). Then \(TV(g_i^{(1)}) \geq \sum_{i=1}^{n-1} |b_{i+1} - b_i| \). Let \(\tilde{g} = \tilde{g}_1 + \sum_{j=2}^p g_j \). Then \(g(X_i) = g(X_i) \) for \(i = 1, \ldots, n \), but \(R_n(\tilde{g}) \leq R_n(g) \), which implies the desired result for \(m = 2 \).

S1.2 Proofs of Theorem 1 and corollaries

We split the proof of Theorem 1 and Corollary 1 into five lemmas. The first one provides a probability inequality controlling the magnitude of \(\langle \varepsilon, h_j \rangle_n \), in terms of the semi-norm \(\|h_j\|_{F,j} \) and the norm \(\|h_j\|_n \) for all \(h_j \in G_j \) with a single \(j \).

Lemma 1.

For fixed \(j \in \{1, \ldots, p\} \), let

\[
A_{nj} = \bigcup_{h_j \in G_j} \{ \langle \varepsilon, h_j \rangle_n / C_1 > \gamma_{nj,t} w_{nj} \|h_j\|_{F,j} + \gamma_{nj,t} \|h_j\|_n \},
\]

where \(\gamma_{nj,t} = \gamma_{nj} + \sqrt{t/n} \) for \(t > 0 \), \(\gamma_{nj} = n^{-1/2} \psi_{nj}(w_{nj}) / w_{nj} \), and \(w_{nj} \in (0, 1] \). Under Assumptions 1 and 2, we have

\[
P(A_{nj}) \leq \exp(-t).
\]

Proof. In the event \(A_{nj} \), we renormalize \(h_j \) by letting \(f_j = h_j / (\|h_j\|_{F,j} + \|h_j\|_n / w_{nj}) \). Then \(\|f_j\|_{F,j} + \|f_j\|_n / w_{nj} = 1 \) and hence \(f_j \in G_j(w_{nj}) \). By Lemma 12 with \(F_1 = G_j(w_{nj}) \) and \(\delta = w_{nj} \), we have for \(t > 0 \),

\[
P(A_{nj}) \leq P \left\{ \sup_{f_j \in G_j(w_{nj})} |\langle \varepsilon, f_j \rangle_n| / C_1 > \gamma_{nj,t} w_{nj} \right\}
\]

\[
= P \left\{ \sup_{f_j \in G_j(w_{nj})} |\langle \varepsilon, f_j \rangle_n| / C_1 > n^{-1/2} \psi_{nj}(w_{nj}) + w_{nj} \sqrt{t/n} \right\} \leq \exp(-t).
\]

By Lemma 1 and the union bound, we obtain a probability inequality controlling the magnitude of \(\langle \varepsilon, h_j \rangle_n \) for \(h_j \in G_j \) simultaneously over \(j = 1, \ldots, p \).

Lemma 2.

For each \(j \in \{1, \ldots, p\} \), let

\[
A_{nj} = \bigcup_{h_j \in G_j} \{ |\langle \varepsilon, h_j \rangle_n| > \lambda_{nj} w_{nj} \|h_j\|_{F,j} + \lambda_{nj} \|h_j\|_n \},
\]

where \(\lambda_{nj} / C_1 = \gamma_{nj} + \{\log(p/\epsilon) / n\}^{1/2} \). Under Assumptions 1 and 2, we have

\[
P(\bigcup_{j=1}^p A_{nj}) \leq \epsilon.
\]
Proof. By Lemma 1 with \(t = \log(p/\epsilon)\), we have for \(j = 1, \ldots, p\),
\[
P(A_{nj}) \leq \exp(-t) = \frac{\epsilon}{p}.
\]
Applying the union bound yields the desired inequality. \(\square\)

If \(g^* \in \mathcal{G}\), then \(K_n(\hat{g}) \leq K_n(g^*)\) directly gives the basic inequality:
\[
\frac{1}{2}\|\hat{g} - g^*\|_n^2 + A_0 R_n(\hat{g}) \leq \langle \varepsilon, \hat{g} - g^* \rangle_n + A_0 R_n(g^*).
\] (S1)

By exploiting the convexity of the regularizer \(R_n(\cdot)\), we provide a refinement of the basic inequality (S1), which relates the estimation error of \(\hat{g}\) to that of any additive function \(\bar{g} \in \mathcal{G}\) and the corresponding regularization \(R_n(\bar{g})\).

Lemma 3. The fact that \(\hat{g}\) is a minimizer of \(K_n(g)\) implies that for any function \(\bar{g}(x) = \sum_{j=1}^p \bar{g}_j(x^{(j)}) \in \mathcal{G}\),
\[
\frac{1}{2}\|\hat{g} - g^*\|_n^2 + \frac{1}{2}\|\bar{g} - \bar{g}\|_n^2 + A_0 R_n(\hat{g})
\leq \frac{1}{2}\|\bar{g} - g^*\|_n^2 + \langle \varepsilon, \bar{g} - \bar{g}\rangle_n + A_0 R_n(\bar{g}).
\] (S2)

Proof. For any \(t \in (0, 1]\), the fact that \(K_n(\hat{g}) \leq K_n((1-t)\hat{g} + \bar{g})\) implies
\[
\frac{t^2}{2}\|\hat{g} - \bar{g}\|_n^2 + R_n(\hat{g}) \leq \langle Y - ((1-t)\hat{g} + \bar{g}), t(\hat{g} - \bar{g})\rangle_n + R_n((1-t)\hat{g} + \bar{g})
\leq \langle Y - ((1-t)\hat{g} + \bar{g}), t(\hat{g} - \bar{g})\rangle_n + (1-t)R_n(\hat{g}) + tR_n(\bar{g}),
\]
by similar calculation leading to the basic inequality (S1) and by the convexity of \(R_n(\cdot)\): \(R_n((1-t)\hat{g} + \bar{g}) \leq (1-t)R_n(\hat{g}) + tR_n(\bar{g})\). Using \(Y = g^* + \varepsilon\), simple manipulation of the preceding inequality shows that for any \(t \in (0, 1]\),
\[
\langle \hat{g} - g^*, \hat{g} - \bar{g}\rangle_n - \frac{t}{2}\|\hat{g} - \bar{g}\|_n^2 + R_n(\hat{g}) \leq \langle \varepsilon, \hat{g} - \bar{g}\rangle_n + R_n(\bar{g}),
\]
which reduces to
\[
\frac{1}{2}\|\hat{g} - g^*\|_n^2 + \frac{1-t}{2}\|\hat{g} - \bar{g}\|_n^2 + R_n(\hat{g}) \leq \frac{1}{2}\|\bar{g} - g^*\|_n^2 + \langle \varepsilon, \bar{g} - \bar{g}\rangle_n + R_n(\bar{g})
\]
by the fact that \(2(\hat{g} - g^*, \hat{g} - \bar{g})_n = \|\hat{g} - g^*\|_n^2 + \|\hat{g} - \bar{g}\|_n^2 - \|\bar{g} - g^*\|_n^2\). Letting \(t \searrow 0\) yields the desired inequality (S2). \(\square\)

From Lemma 3, we obtain an upper bound of the estimation error of \(\hat{g}\) when the magnitudes of \(\langle \varepsilon, \hat{g}_j - \bar{g}_j\rangle_n, j = 1, \ldots, p\), are controlled by Lemma 2.
Lemma 4. Let \(A_n = \bigcup_{j=1}^p A_{nj} \) with \(h_j = \hat{g}_j - \bar{g}_j \) in Lemma 2. In the event \(A_n^c \), we have for any subset \(S \subset \{1, 2, \ldots, p\} \),

\[
\frac{1}{2} \|\hat{g} - g^*\|_n^2 + \frac{1}{2} \|\bar{g} - \bar{g}\|_n^2 + (A_0 - 1)R_n(\hat{g} - \bar{g}) \leq \Delta_n(\bar{g}, S) + 2A_0 \sum_{j \in S} \lambda_{nj}\|\hat{g}_j - \bar{g}_j\|_n, \tag{S3}
\]

where

\[
\Delta_n(\bar{g}, S) = \frac{1}{2} \|\bar{g} - g^*\|_n^2 + 2A_0 \left(\sum_{j=1}^p \rho_{nj}\|\hat{g}_j\|_{F,j} + \sum_{j \in S^c} \lambda_{nj}\|\hat{g}_j\|_n \right).
\]

Proof. By the refined basic inequality (S2), we have in the event \(A_n^c \),

\[
\frac{1}{2} \|\hat{g} - g^*\|_n^2 + \frac{1}{2} \|\bar{g} - \bar{g}\|_n^2 + A_0 R_n(\hat{g}) \leq \frac{1}{2} \|\bar{g} - g^*\|_n^2 + R_n(\hat{g} - \bar{g}) + A_0 R_n(\bar{g}).
\]

Applying to the preceding inequality the triangle inequalities,

\[
\|\hat{g}_j\|_{F,j} \geq \|\hat{g}_j - \bar{g}_j\|_{F,j} - \|\bar{g}_j\|_{F,j}, \quad j = 1, \ldots, p,
\]

\[
\|\hat{g}_j\|_n \geq \|\hat{g}_j - \bar{g}_j\|_n - \|\bar{g}_j\|_n, \quad j \in S^c,
\]

\[
\|\hat{g}_j\|_n \geq \|\bar{g}_j\|_n - \|\hat{g}_j - \bar{g}_j\|_n, \quad j \in S,
\]

and rearranging the result leads directly to (S3).

Taking \(S = \emptyset \) in (S3) yields (15) in Corollary 1. In general, we derive implications of (S3) by invoking the compatibility condition (Assumption 3).

Lemma 5. Suppose that Assumption 3 holds. If \(A_0 > (\xi_0 + 1)/(\xi_0 - 1) \), then (S3) with \(S \) from Assumption 3 implies (14) in Theorem 1.

Proof. For the subset \(S \) used in Assumption 3, write

\[
Z_n = \frac{1}{2} \|\hat{g} - g^*\|_n^2 + \frac{1}{2} \|\bar{g} - \bar{g}\|_n^2,
\]

\[
T_{n1} = \sum_{j=1}^p \rho_{nj}\|\hat{g}_j - \bar{g}_j\|_{F,j} + \sum_{j \in S^c} \lambda_{nj}\|\hat{g}_j - \bar{g}_j\|_n, \quad T_{n2} = \sum_{j \in S} \lambda_{nj}\|\hat{g}_j - \bar{g}_j\|_n.
\]

Inequality (S3) can be expressed as

\[
Z_n + (A_0 - 1)(T_{n1} + T_{n2}) \leq \Delta_n(\bar{g}, S) + 2A_0 T_{n2},
\]
which leads to two possible cases: either

\[Z_n + \xi_1(A_0 - 1)(T_{n1} + T_{n2}) \leq \Delta_n(\bar{g}, S), \] (S4)

or \((1 - \xi_1)(A_0 - 1)(T_{n1} + T_{n2}) \leq 2A_0T_n2,\) that is,

\[(A_0 - 1)(T_{n1} + T_{n2}) \leq \frac{2A_0}{1 - \xi_1}T_{n2} = (\xi_0 + 1)(A_0 - 1)T_{n2}, \] (S5)

where \(\xi_1 = 1 - 2A_0/(\xi_0 + 1)(A_0 - 1)\) \((\xi_0 > 1)/((\xi_0 - 1).\) If (S5) holds, then \(T_{n1} \leq \xi_0T_{n2},\) which, by Assumption 3 with \(f_j = \bar{g}_j - \bar{g}_j,\) implies

\[T_{n2} \leq \kappa_0^{-1}\left(\sum_{j \in S} \lambda_{nj}^2\right)^{1/2} \|\bar{g} - \bar{g}\|_n. \] (S6)

Substituting (S6) into the right hand side of (S3) and using \(2ab \leq a^2 + b^2\) yields

\[Z_n + (A_0 - 1)(T_{n1} + T_{n2}) \leq \Delta_n(\bar{g}, S) + 2A_0\kappa_0^{-1}\left(\sum_{j \in S} \lambda_{nj}^2\right)^{1/2} \|\bar{g} - \bar{g}\|_n \]
\[\leq \Delta_n(\bar{g}, S) + \frac{1 - \xi_1}{2} \|\bar{g} - \bar{g}\|_n^2 + \frac{2A_0^2}{1 - \xi_1}\kappa_0^{-2}\left(\sum_{j \in S} \lambda_{nj}^2\right). \] (S7)

Therefore, inequality (S3), through (S4) and (S7), implies

\[\frac{1}{2} \|\bar{g} - g^*\|_n^2 + \frac{\xi_1}{2} \|\bar{g} - \bar{g}\|_n^2 + \xi_1(A_0 - 1)(T_{n1} + T_{n2}) \leq \Delta_n(\bar{g}, S) + \xi_2A_0\kappa_0^{-2}\left(\sum_{j \in S} \lambda_{nj}^2\right). \]

\(\square\)

Finally, combining Lemmas 2, 4 and 5 completes the proof of Theorem 1.

Proof of Corollary 2. The result follows from upper bounds of \(\sum_{j \in S} \lambda_{nj}^2\) and \(\sum_{j \in S^c} \lambda_{nj}\|\bar{g}_j\|_n\) by the definition \(S = \{1 \leq j \leq p : \|\bar{g}_j\|_n > C_0\lambda_{nj}\}.\) First, because \(\sum_{j=1}^p \lambda_{nj}^{2-q}\|\bar{g}_j\|_n^q \geq \sum_{j \in S} \lambda_{nj}^{2-q}(C_0^+)^{q}\lambda_{nj}^q,\) we have

\[\sum_{j \in S} \lambda_{nj}^2 \leq (C_0^+)^{-q}\sum_{j=1}^p \lambda_{nj}^{2-q}\|\bar{g}_j\|_n^q, \] (S8)

where for \(z \geq 0, (z^+)^q = z^q\) if \(q > 0\) or \(1 = 1\) if \(q = 0.\) Second, because \(\sum_{j \in S^c} \lambda_{nj}\|\bar{g}_j\|_n \leq \sum_{j=1}^p \lambda_{nj}(C_0\lambda_{nj})^{1-q}\|\bar{g}_j\|_n^q,\) we have

\[\sum_{j \in S^c} \lambda_{nj}\|\bar{g}_j\|_n \leq C_0^{1-q}\sum_{j=1}^p \Lambda_{nj}^{2-q}\|\bar{g}_j\|_n^q. \] (S9)
Inserting (S8) and (S9) into (14) yields the desired inequality.

Proof of Corollary 3. The result follows directly from Corollary 2, because \(\lambda_{nj}^{2-q} = C_{1}^{2-q}(\gamma_{n}(q) + \nu_{n})^{2-q} \) and \(\rho_{nj} = C_{1}(\gamma_{n}(q) + \nu_{n})\gamma_{1-q}(q) \leq C_{1}(\gamma_{n}(q) + \nu_{n})^{2-q} \), where \(\nu_{n} = (\log(p/\epsilon)/n)^{1/2} \).

S1.3 Proofs of Theorem 2 and corollaries

Write \(h_{j} = \hat{g}_{j} - \bar{g}_{j} \) and \(h = \hat{g} - \bar{g} \) and, for the subset \(S \) used in Assumption 5,

\[
Z_{n} = \frac{1}{2} \| \hat{g} - g^{*} \|_{n}^{2} + \frac{1}{2} \| h \|_{n}^{2},
\]

\[
T_{n1}^{*} = \sum_{j=1}^{p} \rho_{nj} \| h_{j} \|_{F,j} + \sum_{j \in S^{c}} \lambda_{nj} \| h_{j} \|_{Q}, \quad T_{n2}^{*} = \sum_{j \in S} \lambda_{nj} \| h_{j} \|_{Q}.
\]

Compared with the definitions in Section S1.2, \(Z_{n} \) is the same as before, and \(T_{n1}^{*} \) and \(T_{n2}^{*} \) are similar to \(T_{n1} \) and \(T_{n2} \), but with \(\| h_{j} \|_{Q} \) used instead of \(\| h_{j} \|_{n} \).

Let

\[
\Omega_{n1} = \left\{ \sup_{g \in \mathcal{G}} \frac{\| g \|_{n}^{2} - \| g \|_{Q}^{2}}{R^{2}(g)} \leq \phi_{n} \right\}.
\]

Then \(P(\Omega_{n1}) \geq 1 - \pi \). In the event \(\Omega_{n1} \), we have by Assumption 6(i),

\[
\max_{j=1,...,p} \sup_{g_{j} \in \mathcal{G}_{j}} \frac{\| g_{j} \|_{n} - \| g_{j} \|_{Q}}{w_{nj} \| g_{j} \|_{F,j} + \| g_{j} \|_{Q}} \leq (\max_{j=1,...,p} \lambda_{nj})^{1/2} \phi_{n} \leq \eta_{0}. \tag{S10}
\]

By direct calculation, (S10) implies that if \(\| g_{j} \|_{F,j} + \| g_{j} \|_{n}/w_{nj} \leq 1 \) then \(\| g_{j} \|_{F,j} + \| g_{j} \|_{Q}/w_{nj} \leq (1 - \eta_{0})^{-1} \). Hence (S10) implies that

\[
H(u, \mathcal{G}_{j}(w_{nj}), \| \cdot \|_{n}) \leq H((1 - \eta_{0})u, \mathcal{G}_{j}^{*}(w_{nj}), \| \cdot \|_{n}),
\]

and \(\psi_{nj}(w_{nj}) \) satisfying (19) also satisfies (13) for \(\delta = w_{nj} \). Let \(\Omega_{n2} = A_{n}^{c} \) in Lemma 4. Then conditionally on \(X_{1:n} = (X_{1}, \ldots, X_{n}) \) for which \(\Omega_{n1} \) occurs, we have \(P(\Omega_{n2}|X_{1:n}) \geq 1 - \epsilon \) by Lemma 2. Therefore, \(P(\Omega_{n1} \cap \Omega_{n2}) \geq (1 - \epsilon)(1 - \pi) \geq 1 - \epsilon - \pi \).

In the event \(\Omega_{n2} \), recall that (S3) holds, that is,

\[
Z_{n} + (A_{0} - 1)R_{n}(h) \leq \Delta_{n}(\hat{g}, S) + 2A_{0} \sum_{j \in S} \lambda_{nj} \| h_{j} \|_{n}. \tag{S11}
\]

In the event \(\Omega_{n1} \cap \Omega_{n2} \), simple manipulation of (S11) using (S10) shows that

\[
Z_{n} + A_{1} R_{n}^{*}(h) \leq \Delta_{n}^{*}(\hat{g}, S) + 2A_{0} \sum_{j \in S} \lambda_{nj} \| h_{j} \|_{Q}, \tag{S12}
\]
where \(A_1 = (A_0 - 1) - \eta_0(A_0 + 1) > 0 \) because \(A_0 > (1 + \eta_0)/(1 - \eta_0) \). In the following, we restrict to the event \(\Omega_{n1} \cap \Omega_{n2} \) with probability at least \(1 - \epsilon - \pi \).

Proof of Corollary 4. Taking \(S = \emptyset \) in (S12) yields (28), that is,

\[
Z_n + A_1 R_n^*(h) \leq \Delta_n^*(\bar{g}, \bar{g}^*, \emptyset).
\]

As a result, \(R_n^*(h) \leq A_1^{-1} \Delta_n^*(\bar{g}, \emptyset) \) and hence \(h \|Q \leq \|h\|^2_n + \phi_n R_n^*(h) \leq \|h\|^2_n + \phi_n A_1^{-2} \Delta_n^2(\bar{g}, \emptyset) \). Inequality (29) then follows from (28).

Proof of Theorem 2. Inequality (S12) can be expressed as

\[
Z_n + A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\bar{g}, S) + 2A_0 T_{n2}^*,
\]

which leads to two possible cases: either

\[
Z_n + A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\bar{g}, S), \quad (S13)
\]

or \((1 - \xi_1)A_1(T_{n1}^* + T_{n2}^*) \leq 2A_0 T_{n2}^* \), that is,

\[
A_1(T_{n1}^* + T_{n2}^*) \leq \frac{2A_0}{1 - \xi_1} T_{n2}^* = (\xi_0^* + 1)A_1 T_{n2}^* = \xi_2 T_{n2}^*, \quad (S14)
\]

where \(\xi_1^* = 1 - 2A_0/\{((\xi_0^* + 1)A_1) \in (0, 1) \) because \(A_0 > \{\xi_0^* + 1 + \eta_0(\xi_0^* + 1)\}/\{\xi_0^* - 1 - \eta_0(\xi_0^* + 1)\} \). If (S14) holds, then \(T_{n1}^* \leq \xi_0^* T_{n2}^* \), which, by the theoretical compatibility condition (Assumption 5) with \(f_j = \bar{g}_j - \tilde{g}_j \), implies

\[
T_{n2}^* \leq \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{nj}^2 \right)^{1/2} \|h\|_Q \quad (S15)
\]

\[
\leq \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{nj}^2 \right)^{1/2} \left\{ \|h\|_n + \phi_n^{1/2}(T_{n1}^* + T_{n2}^*) \right\} \quad (S16)
\]

Substituting (S16) into the right hand side of (S12) and using Assumption 6(ii), \(\phi_n^{1/2}(\xi_0^* + 1) \kappa_0^{-1}(\sum_{j \in S} \lambda_{nj}^2)^{1/2} \leq \eta_1 \), yields

\[
Z_n + A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\bar{g}, S) + 2A_0 \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{nj}^2 \right)^{1/2} \left\{ \|h\|_n + \phi_n^{1/2}(T_{n1}^* + T_{n2}^*) \right\}
\]

\[
\leq \Delta_n^*(\bar{g}, S) + 2A_0 \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{nj}^2 \right)^{1/2} \|h\|_n + (1 - \xi_1^*)A_1 \eta_1 (T_{n1}^* + T_{n2}^*). \]
Using \(0 \leq \eta_1 \leq 1\) and \(2ab \leq a^2 + b^2\) in the above inequality leads to

\[
Z_n + \xi_1^* A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\tilde{g}, S) + \frac{1 - \xi_1^*}{2} \|h\|^2_n + \frac{2A_0^2}{1 - \xi_1^*} \kappa_0^{-2} \left(\sum_{j \in S} \lambda_{n_j}^2 \right).
\]

(S17)

Therefore, inequality (S12), through (S13) and (S17), implies (26):

\[
\frac{1}{2} \|\tilde{g} - g^*\|^2_n + \frac{\xi_1^*}{2} \|h\|^2_n + \xi_1^* A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\tilde{g}, S) + \xi_1^* A_0 \kappa_0^{-2} \left(\sum_{j \in S} \lambda_{n_j}^2 \right).
\]

To demonstrate (27), we return to the two possible cases, (S13) or (S14). On one hand, if (S13) holds, then \(A_1 R_n^*(h) = A_1(T_{n1}^* + T_{n2}^*)\) is also bounded from above by \(\xi_1^{*-1}\) times the right hand side of (S13) and hence

\[
\|h\|^2_Q \leq \|h\|^2_n + \phi_n R_n^{2*}(h) \leq \|h\|^2_n + \frac{\phi_n}{A_1^2} \xi_1^{*-2} \Delta_n^2(\tilde{g}, S).
\]

(S18)

Simple manipulation of (S13) using (S18) yields

\[
\frac{1}{2} \|\tilde{g} - g^*\|^2_n + \frac{1}{2} \|h\|^2_Q + \xi_1^* A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\tilde{g}, S) + \frac{\phi_n}{2A_1^2} \xi_1^{*-2} \Delta_n^2(\tilde{g}, S).
\]

(S19)

On the other hand, combining (S14) and (S15) yields

\[
A_1(T_{n1}^* + T_{n2}^*) \leq \xi_2^* \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{n_j}^2 \right)^{1/2} \|h\|_Q.
\]

(S20)

As a result, \(A_1 R_n^*(h) = A_1(T_{n1}^* + T_{n2}^*)\) is also bounded from above by the right hand side of (S20) and hence by Assumption 6(ii),

\[
\|h\|^2_Q \leq \|h\|^2_n + \phi_n R_n^{2*}(h)
\]

\[
\leq \|h\|^2_n + \frac{\phi_n}{A_1^2} \xi_2^* \kappa_0^{-2} \left(\sum_{j \in S} \lambda_{n_j}^2 \right) \|h\|^2_Q \leq \|h\|^2_n + \frac{1}{2} \eta_1^2 \|h\|^2_Q.
\]

(S21)

Substituting (S15) into the right hand side of (S12) and using (S21) and \(2ab \leq a^2 + b^2\) yields

\[
\frac{1}{2} \|\tilde{g} - g^*\|^2_n + \frac{1 - \eta_1^2}{2} \|h\|^2_Q + A_1(T_{n1}^* + T_{n2}^*) \leq \Delta_n^*(\tilde{g}, S) + 2A_0 \kappa_0^{-1} \left(\sum_{j \in S} \lambda_{n_j}^2 \right)^{1/2} \|h\|_Q
\]

\[
\leq \Delta_n^*(\tilde{g}, S) + \frac{(1 - \eta_1^2)(1 - \xi_1^*)}{2} \|h\|^2_Q + \frac{2A_0^2}{(1 - \eta_1^2)(1 - \xi_1^*) \kappa_0^{-2}} \left(\sum_{j \in S} \lambda_{n_j}^2 \right).
\]

(S22)
Therefore, inequality (S12), through (S19) and (S22), implies (27):

\[\frac{1}{2} \| \hat{g} - g^\ast \|^2 + \frac{(1 - \eta_2^2)\xi_1^*}{2} \| h \|^2_Q + \xi_1^* A_1 (T_{n1}^* + T_{n2}^*) \]

\[\leq \Delta_n^* (\hat{g}, S) + \frac{\xi_2^* A_0}{1 - \eta_1^2} k_0^{n^2 - 2} \left(\sum_{j \in S} \lambda_{nj}^2 \right) + \frac{\phi_n}{2A_1^2} \xi_1^* - 2 \Delta_n^2 (\hat{g}, S). \]

Proof of Corollary 5. We use the following upper bounds, obtained from (S8) and (S9) with \(S = \{ 1 \leq j \leq p : \| \hat{g}_j \| > C_0^* \lambda_{nj} \} \),

\[\sum_{j \in S} \lambda_{nj}^2 \leq (C_0^* + \eta) \sum_{j=1}^p \lambda_{nj}^2 \| \hat{g}_j \|^2_Q, \tag{S23} \]

and

\[\sum_{j \in S^c} \lambda_{nj} \| \hat{g}_j \|_Q \leq C_0^* \sum_{j=1}^p \lambda_{nj}^2 \| \hat{g}_j \|^2_Q. \tag{S24} \]

Equations (25) and (30) together imply \(\phi_n \Delta_n^* (\hat{g}, S) = O(1) + \phi_n \| \hat{g} - g^\ast \|^2/Q. \) Inserting this into (27) and applying (S23) and (S24) yields the high-probability result about \(D_n^* (\hat{g}, \hat{g}). \) The in-probability result follows by using \(\epsilon \to 0, \| \hat{g} - g^\ast \|^2 = O_p(1) \| \hat{g} - g^\ast \|^2/Q, \) by the Markov inequality, and \(\| \hat{g} - g^\ast \|^2 \leq 2 \| \hat{g} - \hat{g} \|^2 + \| \hat{g} - g^\ast \|^2 \) by the triangle inequality. \(\square \)

Proof of Corollary 6. First, we show

\[w_n^* (q) \leq \{ \gamma_n (q) + \nu_n \}^{1-q}. \tag{S25} \]

In fact, if \(\gamma_n (q) \geq \nu_n, \) then \(\gamma_n^* (q) = \gamma_n (q) \) and \(w_n^* (q) = \gamma_n (q) \) \(1-q \leq \{ \gamma_n (q) + \nu_n \}^{1-q}. \) If \(\gamma_n (q) < \nu_n, \) then \(w_n^* (q) = \nu_n \) \(1-q \leq \{ \gamma_n^* (q) + \nu_n \}^{1-q}. \) By (S23), (S24), and (S25), inequality (34) implies that for any constants \(0 < \eta_1 < 1 \) and \(\eta_2 > 0, \) (25) and (30) are satisfied for sufficiently large \(n. \) The desired result follows from Corollary 5 with \(\hat{g} = g^\ast, \) because \(\lambda_{nj}^{2-q} \leq C_1^{2-q} \{ \gamma_n (q) + \nu_n \}^{2-q} \) and by (S25), \(\rho_{nj} = C_1 w_n^* (q) \{ \gamma_n^* (q) + \nu_n \} \leq C_1 \{ \gamma_n (q) + \nu_n \}^{2-q}. \)

\(\square \)

Proof of Corollary 7. Recall the definition \(\lambda_{nj} = C_1 \{ \gamma_n (q) + \nu_n \} \) and \(\rho_{nj} = C_1 w_n^* (q) \{ \gamma_n^* (q) + \nu_n \}. \) For a constant \(0 < \eta_1 < 1, \) we choose and fix \(C_0' \geq C_0 \) sufficiently large, depending on \(q > 0, \) such that

\[(\xi_1^* + 1)^2 \kappa_0^* - 2 \eta_3 \leq (C_0')^2 \eta_1^2. \]
Let \(S' = \{1 \leq j \leq p : \|g_j^s\|Q > C_0'^s\lambda_{nj}\} \). Then (25) is satisfied with \(S' \), due to (37), (S23), and the above inequality. Similarly, (30) is satisfied with \(S' \) for \(\eta_2 = \eta_3 + (C_0')^{1-q}\eta_3 \), by (S24) and simple manipulation. By Remark 8, Assumption 7 implies Assumption 5 and remains valid when \(S \) is replaced by \(S' \subset S \). The desired result follows from Corollary 5 with \(\bar{g} = g^s \).

\(\square \)

Proof of Corollary 8. The proof is similar to that of Corollary 6. First, we show

\[
\frac{w_n^1(q)M_F}{\gamma_n(q) + \nu_n} \leq (\nu_n)^{1-q}M_q.
\]

(S26)

In fact, if \(\gamma_n^q(q) \geq \nu_n \), then \(\frac{w_n^1(q)}{\gamma_n(q)} = \frac{w_n^1(q)}{\gamma_n^q(q)} = \frac{w_n^1(q)}{\gamma_n^q(q)} \) and \(\frac{w_n^1(q)M_F}{\gamma_n^q(q)} = \frac{w_n^1(q)}{\gamma_n^q(q)}^{1-q}M_q \leq \{\gamma_n^q(q) + \nu_n\}^{1-q}M_q \). If \(\gamma_n(q) < \nu_n \), then \(\frac{w_n^1(q)M_F}{\gamma_n(q)} = \frac{w_n^1(q)}{\gamma_n(q)}^{1-q}M_q \leq \{\gamma_n(q) + \nu_n\}^{1-q}M_q \). By (S23), (S24), and (S26), inequality (40) implies that for any constants \(0 < \eta_1 < 1 \) and \(\eta_2 > 0 \), (25) and (30) are satisfied for sufficiently large \(n \). The desired result follows from Corollary 5 with \(\bar{g} = g^s \), because \(\lambda_{nj}^{2-q}M_q = C_1^{2-q}\{\gamma_n(q) + \nu_n\}^{2-q}M_q \leq C_1^{2-q}\{\gamma_n(q) + \nu_n\}^{2-q}M_q \) and, by (S26), \(\rho_nM_F = C_1w_n^1(q)\{\gamma_n(q) + \nu_n\}M_F \leq C_1\{\gamma_n(q) + \nu_n\}^{2-q}M_q \).

\(\square \)

S1.4 Proofs of Propositions 3, 4, 6, and 8

Denote \(w_{nj} = w_{n,p+1} \) and \(\gamma_{nj} = \gamma_{n,p+1} \) for \(j = 1, \ldots, p \). By direct calculation, (60) implies that for any \(0 \leq q \leq 1 \),

\[
\phi_n(\gamma_{n,p+1} + \nu_n)^{2-q} \leq O(1)\left\{n^{1/2}W_n\gamma_{n,p+1}^{2-q} + n^{1/2}V_n\min\left(\gamma_{n,p+1}^{1-q}, \gamma_{n,p+1}^{1-q}\nu_n\right)\right\}
\]

(S27)

where

\[
V_n = w_{n,p+1}^{\beta_n/2-\tau_0} \quad \text{and} \quad W_n = w_{n,p+1}^{\beta_n/2-\tau_0+\beta_0\tau_0/2}.
\]

We verify that the technical conditions hold as needed for Theorem 4, with \(w_{nj} = w_n^s(q) \) and \(\gamma_{nj} = \gamma_s(q) \) for \(0 \leq q \leq 1 \). First, we verify \(\gamma_{nj} \leq w_{nj} \) for sufficiently large \(n \). It suffices to show that \(\gamma_s(q) \leq w_n^s(q) \) whenever \(\gamma_n(q) \leq 1 \) and \(\nu_n \leq 1 \). In fact, if \(\gamma_n(q) \geq \nu_n \), then \(w_n^s(q) = \gamma_n(q)^{1-q} \) and \(\gamma_s(q) = \gamma_n(q) \) \(\leq \gamma_n(q)^{1-q} \) provided \(\gamma_n(q) \leq 1 \). If \(\gamma_n(q) < \nu_n \), then \(w_n^s(q) = \nu_n^{1-q} \) and \(\gamma_s(q) = B_0^{-1/2}\nu_n^{-1-q(1-q)\beta_0/2} \leq \nu_n \leq \nu_n^{1-q} \) provided \(\nu_n \leq 1 \). Moreover, we have \(\Gamma_n\gamma_s(q)^{1-\beta_0/2} \leq 1 \) for sufficiently large \(n \), because \(\Gamma_n \) is no greater than \(O(\log^{1/2}(n)) \) and \(\gamma_n(q)^{1-\beta_0/2} \leq \gamma_n(q)^{1-\beta_0/2} \) decreases polynomially in \(n^{-1} \) for \(0 < \beta_0 < 2 \).
Proof of Proposition 3. For $w_{nj} = 1$ and $\gamma_{nj} = \gamma_n^*(1) \asymp n^{-1/2}$, inequality (S27) with $q = 0$ and $\nu_n = o(1)$ gives

$$
\phi_n \{\gamma_n^*(1) + \nu_n\}^2 \leq O(1) \left\{ n^{1/2} \Gamma_n \gamma_n^2(1) + n^{1/2} \gamma_n^*(1) \nu_n + n \gamma_n^*(1) \nu_n^2 \right\} \\
= O(1) \left(n^{-1/2} \Gamma_n + \nu_n \right),
$$

Assumption 6(i) holds because Γ_n is no greater than $O(\log^{1/2}(n))$. Inserting the above inequality into (29) in Corollary 4 yields the out-of-sample prediction result. The in-sample prediction result follows directly from Corollary 4.

Proof of Proposition 4. For $\gamma_{nj} = \gamma_n^*(0)$, inequality (S27) with $q = 0$ gives

$$
\phi_n \{\gamma_n^*(0) + \nu_n\}^2 \leq O(1) \left\{ n^{1/2} \Gamma_n W_n \gamma_n^2(0) + n^{1/2} V_n \gamma_n^*(0) \nu_n + n V_n^2 \gamma_n^2(0) \nu_n^2 \right\}. \tag{S29}
$$

By (S28) and $\gamma_n^*(0) = B_0^* n^{-1/2} w_n^s(0)^{q_0} / 2$, simple manipulation gives

$$
n^{1/2} V_n \gamma_n^*(0) \nu_n = B_0^* w_n^s(0)^{-1} \nu_n, \tag{S30}
$$

$$
n^{1/2} W_n \gamma_n^*(0) \nu_n^2 = B_0^* w_n^s(0)^{-1 - q_0} \gamma_n^*(0).$$

Then (43) and (S29) directly imply that Assumption 6(i) holds with any fixed $0 < \eta_0 < 1$ for sufficiently large n and also (34) holds. The desired result follows from Corollary 6 with $q = 0$.

Proof of Proposition 6. For $\gamma_{nj} = \gamma_n^*(q)$, inequality (S27) with $q = 0$ gives

$$
\phi_n \{\gamma_n^*(q) + \nu_n\}^2 \leq O(1) \left\{ n^{1/2} \Gamma_n W_n \gamma_n^2(q) + n^{1/2} V_n \gamma_n^*(q) \nu_n + n V_n^2 \gamma_n^2(q) \nu_n^2 \right\}. \tag{S31}
$$

By (S28) and $\gamma_n^*(q) = B_0^* n^{-1/2} w_n^s(q)^{-q_0} / 2$, simple manipulation gives

$$
n^{1/2} V_n \gamma_n^*(q) \nu_n^{1-q} = B_0^* w_n^s(q)^{-1} \nu_n^{1-q},
$$

$$
n^{1/2} W_n \gamma_n^*(q) \nu_n^{2-2q} = B_0^* w_n^s(q)^{-1 - q_0} \gamma_n^*(q)^{1-q}.$$

Then (51) and (S31), along with the fact that $\nu_n = o(1)$, $\gamma_n(q) = o(1)$, and $q > 0$, imply that Assumption 6(i) holds with any fixed $0 < \eta_0 < 1$ for sufficiently large n. Moreover, (51) and (S27) with $\gamma_{nj} = \gamma_n^*(q)$ directly yield (37). The desired result follows from Corollary 7.

Proof of Proposition 8. Denote by $\gamma_{n,p+1}^+, V_n^+, W_n^+$, etc., the corresponding quantities based on (w_{nj}', γ_{nj}'). By (S28) and (S30) with $\tau_0 = 1$, we have $n^{1/2} V_n^+ \gamma_{n,p+1}^+ \nu_n = K_0^{-1} (n^{1/2} V_n \gamma_{n,p+1} \nu_n)$ and $n^{1/2} V_n \gamma_{n,p+1} \nu_n = B_0^* \min\{\nu_n \gamma_n^{-1}(0), 1\} \leq B_0^*$. Moreover, we have
\[n^{1/2} \Gamma_n W_n^\gamma r_0^2 = n^{1/2} \Gamma_n W_n^\gamma K_0^{- \beta_0 - \gamma^2} (0) = o(1) \] for a constant \(K_0 \) independent of \((n, p) \), because \(W_n' = 1, \Gamma_n \) is no greater than \(O(\log^{1/2}(n)) \), and \(n^{1/2} \gamma^2 (0) \) decreases polynomially in \(n^{-1} \).

For a constant \(0 < \eta_1 < 1 \), we choose and fix \(K_0 \geq 1 \) sufficiently large, depending on \(M \) but independently of \((n, p) \), such that Assumptions 6(i)–(ii) are satisfied, with \((w_n, \gamma_n) \) replaced by \((w_n', \gamma_n') \), for sufficiently large \(n \), due to (S23), (S29), and the definition \(\chi_n' = C_1 (\gamma_n' + \nu_n) \).

Moreover, by (S25), \(\rho_n' = \rho_n'(w_n') \leq K_0^{1 - \beta_0 / 2} \lambda_n w_n \leq K_0^{1 - \beta_0 / 2} C_1 (\gamma_n (0) + \nu_n)^2 \), which together with (S24) implies that (30) is satisfied for some constant \(\eta_2 > 0 \). Assumption 7 is also satisfied with \(C_0^* \) replaced by \(C_0'^* = C_0^* K_0^{\beta_0 / 2} \) and \(S \) replaced by \(\{ 1 \leq j \leq p : \| g^* \|_Q > C_0'^* \chi_n' \} \subset S \) for \(K_0 \geq 1 \) due to monotonicity in \(S \) for the validity of Assumption 7 by Remark 8, and with \((w_n, \gamma_n) \) replaced by \((w_n', \gamma_n') \) because (20) after the modification implies (20) itself, with \(w_n' \geq w_n \) for \(K_0 \geq 1 \) and \(\lambda_n \) constant in \(j \). The desired result follows from Corollary 5 with \(g = g^* \).

\[\square \]

S1.5 Proof of Proposition 5

Here we verify explicitly conditions of Theorem 5 for Sobolev spaces \(W_{r_i}^{m_i} \) and bounded variation spaces \(V_{r_i}^{m_i} \) with \(r_i = 1 \) on \([0, 1]\) in the case of \(\tau_j < 1 \), where \(\tau_i = 1 / (2m_i + 1 - 2/(r_i \wedge 2)) \). Because conditions (62), (63), (64) and (65) depend on \((m_j, r_j)\) only through \(\tau_j \), we assume without loss of generality \(1 \leq r_j \leq 2 \). When the average marginal density of \(\{ X_i^{(j)} : i = 1, \ldots, n \} \) is uniformly bounded away from 0 and \(\infty \), the norms \(\| g_j \|_Q \) and \(\| g_j \|_{L_2} \) are equivalent, so that condition (64) and (65) hold for any \(L_2 \)-orthonormal bases \(\{ u_{\ell} : \ell \geq 1 \} \). Let \(u_0(x) \) be a mother wavelet with \(m \) vanishing moments, e.g., \(u_0(x) = 0 \) for \(|x| > c_0 \), \(\int u_0^2(x)dx = 1 \), \(\int x^m u_0(x)dx = 0 \) for \(m = 0, \ldots, \max j m_j \), and \(\{ u_{0, kl}(x) = \sqrt{2^k} u_0(2^k x - (\ell - 1)) : \ell = 1, \ldots, 2^k, k = 0, 1, \ldots \} \) is \(L_2 \)-orthonormal. We shall identify \(\{ u_{\ell} : \ell \geq 1 \} \) as \(\{ u_{0,11}, u_{0,21}, u_{0,22}, u_{0,31}, \ldots \} \). Because \(\# \{ \ell : u_{0, kl}(x) \neq 0 \} \leq 2c_0 k \) for \(x \),

\[
\sum_{\ell=2}^{2k+1-1} u_{j, \ell}^2(x) = \sum_{\ell=1}^{2k} u_{0, kl}^2(x) \leq 2c_0 2^k \| u_0 \|_\infty, \forall x,
\]

so that (62) holds. Suppose \(g_{j}(x) = \sum_{\ell=1}^{\infty} \theta_{j, \ell} u_{j, \ell}(x) = \sum_{k=0}^{\infty} \sum_{\ell=1}^{2k} \theta_{j, k} u_{0, kl}(x) \). Define \(u_{0}^{(-m)}(x) \) as the \(m \)-th integral of \(u_0 \), \(u_{0}^{(-m)}(x) = \int_{-\infty}^{x} u_0^{(-m+1)}(t) dt \), and \(g_{j}^{(m)}(x) = (d/dx)^m g_{j}(x) \). Because \(u_0 \) has vanishing moments, \(\int u_{0}^{(m)}(x) dx = 0 \) for \(m = 0, \ldots, \max j m_j \), so that \(u_{0}^{(m)}(x) = 0 \) for \(|x| > c_0 \). Due to the orthonormality of the basis functions, for \(1 \leq \ell \leq 2^k \), we have

\[
2^{m_j k} \theta_{j, kl} = 2^{m_j k} \int g_{j}(x) u_{0, kl}(x) dx = (-1)^m \int g_{j}^{(m_j)}(x) u_{0, m_j, kl}(x) dx
\]
with \(u_{0,mk}\ell(x) = \sqrt{2^k u_0^{-m}}(2^k x - \ell + 1) \). By the Hölder inequality,

\[
\sum_{\ell=2^{k-1}}^{2^k-1} \left| 2^{m,k} \theta_{j\ell} \right|^{r_j} \leq \sum_{\ell=2^{k-1}}^{2^k-1} \int g_j^{(m_j)}(x) r_j \left| u_{0,mk}\ell(x) \right|^{r_j(1-2(1-r_j))} dx \left| u_{0,mk}\ell \right|^{r_j(2-1(1-r_j))} \left| L_2 \right|
\]

\[
\leq \left| g_j^{(m_j)} \right|^{r_j} \left| L_{r_j} \right| 2c_0 \left| u_0^{(m_j)} \right|^{r_j(1-2(1-r_j))} 2^{(1-2(1-r_j))} \left| u_0^{(m_j)} \right|^{2(1-1(1-r_j))} \left| L_2 \right|.
\]

Because \(2^{m_j,k-2(1-r_j)} = 2^{k(m_j+1-2(1-r_j))} = 2^{(2-r_j)} \) and \(1 \leq r_j \leq 2 \), we have

\[
\left\{ \sum_{\ell=2^{k-1}}^{2^k-1} 2^{k/r_j} \theta_{j\ell}^2 \right\}^{1/2} \leq \left\{ \sum_{\ell=2^{k-1}}^{2^k-1} 2^{(2/r_j)} \theta_{j\ell}^2 \right\}^{1/2} \leq \left| g_j^{(m_j)} \right|^{1/r_j} \left| L_{r_j} \right| (2c_0)^{1/r_j} \left| u_0^{(m_j)} \right|^{2/r_j-1} \left| u_0^{(m_j)} \right|^{2-2/r_j} \left| L_2 \right|.
\]

Because \(\ell_{j/k}^{1/(2r_j)} \geq 2^{k/w_{nj}} \) and \(\ell_{jk} \leq 1 + 2^{2r_j} \ell_{j,k-1} \) with \(r_j < 1 \), we have \(\ell_{jk} \leq 4\ell_{j,k-1} \), so that \(\{\ell_{j,k-1} + 1, \ldots, \ell_{j,k}\} \) involves at most three resolution levels. Thus, condition (63) follows from the above inequality. For the bounded variation class, we have

\[
2^{m_j,k} \theta_{j\ell} = 2^{m_j,k} \int g_j(x) u_{0,k\ell}(x) dx = (-1)^m \int u_{0,mk\ell}(x) dg_j^{(m_j-1)}(x),
\]

so that (63) follows from the same proof with \(r_j = 1 \).

S1.6 Proof of Theorem 3

(i) For \(\delta_j \in \{0, 1\} \) and \(e_{j\ell} \in \{-1, 1\} \), let

\[
g_j(t) = \sigma_n \sum_{\ell=1}^{k} \delta_j e_{j\ell} u_{j\ell}(t), \quad j = 1, \ldots, p,
\]

where \(\sigma_n = \sigma_n^{-1/2} \). By (53) and (54),

\[
\|g_j\|_{Q}^2 \leq \sum_{\ell=1}^{k} (\delta_j \sigma_n e_{j\ell})^2 = \delta_j \sigma_n^2 k, \quad \|g_j\|_{F,j} \leq \delta_j \sigma_n C_F k^{1/3n+1/2}.
\]

(S32)

Consider probability \(\mathbb{P} \) under which \(\{\delta_j : 1 \leq j \leq p\} \) are deterministic and \(\{e_{j\ell} : 1 \leq \ell \leq k, 1 \leq j \leq p\} \) are independent variables with

\[
\delta_j \in \{0, 1\}, \quad \sum_{j=1}^{p} \delta_j = s, \quad \mathbb{P}\{e_{j\ell} = \pm 1\} = 1/2.
\]

(S33)

It follows from (55), (S32) and (S33) that

\[
\sum_{j=1}^{p} \|g_j\|_{Q}^2 \leq s \sigma_n^2 k^{3/2} = \sigma^2 M_q, \quad \sum_{j=1}^{p} \|g_j\|_{F,j} \leq s \sigma_n C_F k^{1/3n+1/2} = \sigma M_F,
\]

13
so that $\mathbb{P}\{g \in \mathcal{G}(M_F, M_g)\} = 1$.

It suffices to find a lower bound for the Bayes risk of the Bayes estimator. Denote $X = (X_1, \ldots, X_n)^\top = (X_{i1}^{(j)})_{n \times p}$ and $Y = (Y_1, \ldots, Y_n)^\top$. For the estimation of g_j, the risk of the Bayes rule is bounded by

$$
\mathbb{E}\|g_j - \mathbb{E}(g_j | X, Y)\|^2_Q \geq c_0 \mathbb{E} \sum_{\ell=1}^k \sigma^2_{\ell} \text{Var}\left(\delta_{j, \ell} | X, Y\right).
$$

(S34)

Let $Y_{j\ell} = (Y_{ij} : 1 \leq i \leq n)^\top$ with $Y_{ij} = \sigma_n \delta_{j, \ell} u_{j\ell}(X_{i1}^{(j)}) + \epsilon_i$. We have

$$
\mathbb{E}\text{Var}\left(\delta_{j, \epsilon_{j\ell}} | X, Y\right) \geq \mathbb{E}\text{Var}\left(\delta_{j, \epsilon_{j\ell}} | X, Y, \epsilon_{j', \ell'}, (j', \ell') \neq (j, \ell)\right)
= \mathbb{E}\text{Var}\left(\delta_{j, \epsilon_{j\ell}} | X, Y_{j\ell}\right)
= \delta_j \mathbb{E}\left\{1 - \mathbb{E}^2 \left(\epsilon_{j\ell} | X, Y_{j\ell}\right)\right\}.
$$

(S35)

Let $v_{j\ell} = \sum_{i=1}^n u_{i1}^2(X_{i1}^{(j)})$, $\mu_{j\ell} = \sqrt{v_{j\ell}/n}$ and $z_{j\ell} = \sum_{i=1}^n u_{ij}(X_{i1}^{(j)})Y_{ijk}/v_{j\ell}^{1/2}$. Given $\delta_j = 1$ and $(X, Y_{j\ell})$, $z_{j\ell}$ is sufficient for $\epsilon_{j\ell}$. As $\delta_j z_{j\ell}(\epsilon_{j\ell}, \mu_{j\ell}) \sim \delta_j N(\epsilon_{j\ell} \sigma_{\mu_{j\ell}}, \sigma^2)$, the posterior of $\{\epsilon_{j\ell} : 1 \leq \ell \leq m\}$ given $\delta_j = 1$ and $(X, Y_{j\ell})$ is proportional to

$$
\exp\left\{-\delta_j \frac{\left(\sum_{\ell=1}^k \frac{(z_{j\ell} - \epsilon_{j\ell}|\mu_{j\ell}|)^2}{2\sigma^2}\right)}{\sigma^2}\right\} \propto \exp\left\{\sum_{\ell=1}^k \frac{z_{j\ell}(\epsilon_{j\ell}|\mu_{j\ell}|)}{\sigma^2}\right\}.
$$

It follows that

$$
\delta_j \mathbb{E}\left(\epsilon_{j\ell} | X, Y_{j\ell}\right) = \delta_j \frac{\sinh(z_{j\ell}(\mu_{j\ell}/\sigma))}{\cosh(z_{j\ell}(\mu_{j\ell}/\sigma))}.
$$

For $\delta_j = 1$ and given $(\epsilon_{j\ell}, \mu_{j\ell})$, $z_{j\ell}/\sigma \sim N(\epsilon_{j\ell}\mu_{j\ell}, 1)$ and hence

$$
\delta_j \mathbb{E}\left\{1 - \mathbb{E}^2 \left(\epsilon_{j\ell} | X, Y_{j\ell}\right) | \mu_{j\ell}\right\}
= \delta_j \int \left(1 - \frac{\sinh^2(\mu_{j\ell}x)}{\cosh^2(\mu_{j\ell}x)}\right) \cosh(\mu_{j\ell}x) e^{-\mu_{j\ell}^2/2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
= \delta_j \int \frac{e^{-\mu_{j\ell}^2/2}}{\cosh(\mu_{j\ell}x)} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx
\geq \delta_j \int \frac{1}{\sqrt{2\pi}} e^{-\mu_{j\ell}^2/2 - \mu_{j\ell}|x|} e^{-x^2/2} dx = \delta_j c_1.
$$

Consequently, as $\mathbb{E} \mu_{j\ell}^2 = \mathbb{E} v_{j\ell}/n = \|u_{j\ell}\|^2_Q \leq 1$,

$$
\delta_j \mathbb{E}\left\{1 - \mathbb{E}^2 \left(\epsilon_{j\ell} | X, Y_{j\ell}\right)\right\} \geq \delta_j \int \frac{1}{\sqrt{2\pi}} e^{-1/2 - |x|} e^{-x^2/2} dx = \delta_j c_1.
$$

It follows from (S34), (S35) and the above inequality that

$$
\mathbb{E} \sum_{j=1}^p \left\|g_j - \mathbb{E}(g_j | X, Y)\right\|^2_Q \geq c_0 \sum_{j=1}^p \delta_j c_1 k \sigma_n^2 \geq c_0 c_1 s k \sigma_n^2.
$$

14
It remains to compute $sk\sigma_n^2$. By (55), we have

$$s = \left(\frac{n^{1/2} M_F}{C_F} \right)^{-q\beta_0/(2+(1-q)\beta_0)} \left(\frac{n^{q/2} M_q}{M_F} \right)^{(2+\beta_0)/(2+(1-q)\beta_0)},$$

$$k = \left(\frac{n^{1/2} M_F}{C_F} \right)^{2\beta_0/(2+(1-q)\beta_0)} \left(\frac{n^{q/2} M_q}{M_F} \right)^{-2\beta_0/(2+(1-q)\beta_0)},$$

and hence $sk\sigma_n^2 = \sigma^2(M_F/C_F)^{1-\eta} M_q^{1+\eta}(2-q)/(2+(1-q)\beta_0)$.

(ii) Let N be a uniform random variable in $\{0, \ldots, s_0\}$, and given N let $\delta_j \in \{0, 1\}$ such that $\{j : \delta_j = 1\}$ is a simple random sample (without replacement) of size N in $\{1, \ldots, p\}$. Let $\tau = 1/2$ and

$$g_j(t) = \sigma \lambda_0 \delta_j \sqrt{1-\tau} u_j(t), \quad j = 1, \ldots, p.$$

As $\sum_j \delta_j = N \leq s_0 \leq \min (M_q/\lambda_0^2, M_F/(C_F\lambda_0), p)$,

$$\sum_j \|g_j\|_q^q \leq \sigma^q N \lambda_0^q \leq \sigma^q M_q, \quad \sum_j \|g_j\|_{F,j} \leq \sigma N C_F \lambda_0 \leq \sigma M_F.$$

Similar to the proof of part (i), the Bayes risk of the Bayes rule is bounded from below by

$$\mathbb{E}\left[\left\| g_j - \mathbb{E}(g_j|X, Y) \right\|_Q^2 \right] \geq \mathbb{E} \var\left(\delta_j | X, Y_{j1}, N_j \right) (1-\tau) \sigma^2 \lambda_0^2$$

$$= \mathbb{E} \var\left(\delta_j | z_{j1}, v_{j1}, N_j \right) (1-\tau) \sigma^2 \lambda_0^2,$$

where Y_{j1}, z_{j1} and v_{j1} are as in the proof of (i), and $N_j = N - \delta_j$. The difference here is $k = e_{j1} = 1, n_0 = 2 \log(ep/s_0)$ and $\{\delta_j : 1 \leq j \leq p\}$ are random. We still have

$$z_{j1}(\delta_j, v_{j1}, N_j) \sim N(\delta_j v_{j1}^{1/2} \sqrt{1-\tau} \sigma \lambda_0, \sigma^2).$$

Moreover, for $0 \leq k < s_0$, we have

$$P(N_j = k) = \frac{(1-k/p) + (k+1)/p}{s_0 + 1} = \frac{1 + 1/p}{s_0 + 1},$$

$$\pi_k = P(\delta_j = 1 | N_j = k) = \frac{(k+1)/p}{1 + 1/p} = \frac{k + 1}{p + 1}.$$

Let $\pi_0 = s_0/p$ and $\mu_{j1} = v_{j1}^{1/2} \sqrt{1-\tau} \sigma \lambda_0$. For $0 \leq k < s_0$ and $(2z_{\mu_{j1}} - \mu_{j1}^2)/(2\sigma^2) \leq n \lambda_0^2$, we have $\pi_k \leq \pi_0$ and

$$\mathbb{E}\left(\delta_j | z_{j1} = z, v_{j1}, N_j = k \right) = \pi_k \exp\left\{ -z \mu_{j1}/(2\sigma^2) \right\}$$

$$= \frac{1 - \pi_k}{\pi_0} \exp\left\{ -z \mu_{j1}/(2\sigma^2) \right\} + \pi_k \exp\left\{ -z \mu_{j1}/(2\sigma^2) \right\}$$

$$\leq \frac{1}{1 - \pi_0} + \pi_0 \exp\left\{ (2z_{\mu_{j1}} - \mu_{j1}^2)/(2\sigma^2) \right\}$$

$$\leq \frac{1}{1 - s_0/p + 1/e}.$$

15
By direct calculation, it follows that

$$E \text{Var}(\delta_j | z_{j1}, v_{j1}, N_j)$$

$$= E \left\{ \left(1 - E(\delta_j | z_{j1}, v_{j1}, N_j) \right) E(\delta_j | z_{j1}, v_{j1}, N_j) \right\}$$

$$\geq \frac{1 - s_0/p}{1 - s_0/p + 1/e} E \left\{ E(\delta_j | z_{j1}, v_{j1}, N_j) I\{ (2z_{j1}\mu_{j1} - \mu_{j1}^2)/\sigma^2 \leq n\lambda_0^2, N_j < s_0 \} \right\}$$

$$= \frac{1 - s_0/p}{1 - s_0/p + 1/e} \sum_{k=0}^{s_0-1} P(N_j = k) P(\delta_j = 1 | N_j = k)$$

$$\times P\left\{ (2z_{j1}\mu_{j1} - \mu_{j1}^2)/\sigma^2 \leq n\lambda_0^2 | \delta_j = 1, N_j = k \right\}.$$

As $2z_{j1}\mu_{j1} - \mu_{j1}^2$ given μ_{j1} and $\delta_j = 1$ is Gaussian with mean μ_{j1}^2, the above inequality implies

$$E \text{Var}(\delta_j | z_{j1}, v_{j1}, N_j)$$

$$\geq \frac{1 - s_0/p}{1 - s_0/p + 1/e} \sum_{k=0}^{s_0-1} \left(1 + 1/p \right) \left(\frac{k + 1}{s_0 + 1} \right) \frac{1}{2} P(\mu_{j1}^2/\sigma^2 \leq n\lambda_0^2)$$

$$= (1 - s_0/p)s_0/(4p) \sum_{i=1}^{n} u_{j1}^2(X_{ij})(1 - \tau) \leq n \right\}$$

$$\geq (1 - s_0/p)s_0/(4p) \left\{ 1 - (1 - \tau)E u_{j1}^2(X_{ij}) \right\}.$$

Consequently, the Bayes risk of the Bayes rule is bounded from below by

$$\sum_{j=1}^{p} \left\| g_j - E[g_j | X, Y] \right\|^2_Q \geq \frac{(1 - s_0/p)\tau/4}{1 - s_0/p + 1/e} s_0 (1 - \tau)\sigma^2\lambda_0^2.$$

The conclusion follows as we have picked $\tau = 1/2$.

S1.7 Proof of Theorem 4

We split the proof into three lemmas. First, we provide maximal inequalities on convergence of empirical inner products in functional classes with polynomial entropies.

Lemma 6. Let \mathcal{F}_1 and \mathcal{F}_2 be two functional classes such that

$$\sup_{f_j \in \mathcal{F}_j} \|f_j\|_Q \leq \delta_j, \quad \sup_{f_j \in \mathcal{F}_j} \|f_j\|_\infty \leq b_j, \quad j = 1, 2.$$

Suppose that for some $0 < \beta_j < 2$ and $B_{n_j,\infty} > 0$, condition (S49) holds with

$$\psi_{n,\infty}(z, \mathcal{F}_j) = B_{n_j,\infty} z^{1-\beta_j/2}, \quad j = 1, 2.$$

(S36)
Then we have
\[
E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_q| / C_2 \right\} \\
\leq 2 \left\{ \delta_1 + \frac{2C_2 \psi_{n,\infty}(b_1, \mathcal{F}_1)}{\sqrt{n}} \right\}^{1-\beta_1/2} \left\{ \delta_2 + \frac{2C_2 \psi_{n,\infty}(b_2, \mathcal{F}_2)}{\sqrt{n}} \right\}^{\beta_1/2} \psi_{n,\infty}(b_1, \mathcal{F}_1) \\
+ 2 \left\{ \delta_2 + \frac{2C_2 \psi_{n,\infty}(b_2, \mathcal{F}_2)}{\sqrt{n}} \right\}^{1-\beta_2/2} \left\{ \delta_1 + \frac{2C_2 \psi_{n,\infty}(b_1, \mathcal{F}_1)}{\sqrt{n}} \right\}^{\beta_2/2} \psi_{n,\infty}(b_1, \mathcal{F}_2). \tag{S37}
\]
Moreover, we have for any \(t > 0 \),
\[
\sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_q| / C_3 \\
\leq E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_q| \right\} + \delta_1 b_2 \sqrt{\frac{t}{n} + b_1 b_2 \frac{t}{n}}, \tag{S38}
\]
with probability at least \(1 - e^{-t} \).

Proof. For any function \(f_1, f'_1 \in \mathcal{F}_1 \) and \(f_2, f'_2 \in \mathcal{F}_2 \), we have by triangle inequalities,
\[
||f_1 f_2 - f'_1 f'_2||_n \leq \delta_2 ||f_1 - f'_1||_{n,\infty} + \delta_1 ||f_2 - f'_2||_{n,\infty}.
\]
As a result, we have for \(u > 0 \),
\[
H(u, \mathcal{F}_1 \times \mathcal{F}_2, \| \cdot \|_n) \leq H\{u/(2\delta_2), \mathcal{F}_1, \| \cdot \|_{n,\infty}\} + H\{u/(2\delta_1), \mathcal{F}_2, \| \cdot \|_{n,\infty}\}, \tag{S39}
\]
where \(\mathcal{F}_1 \times \mathcal{F}_2 = \{f_1 f_2 : f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2\} \).

By symmetrization inequality (van der Vaart & Wellner 1996),
\[
E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_q| \right\} \leq 2E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle \sigma, f_1 f_2 \rangle_n| \right\}.
\]
Let \(\hat{\delta}_1 = \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} ||f_1 f_2||_n \leq \min(\delta_1 b_2, \delta_2 b_1) \). By Dudley’s inequality (Lemma 13) conditionally on \(X_{1:n} = (X_1, \ldots, X_n) \), we have
\[
E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle \sigma, f_1 f_2 \rangle_n| X_{1:n} \right\} / C_2 \leq E \left\{ \int_0^{\hat{\delta}_1} H^{1/2}(u, \mathcal{F}_1 \times \mathcal{F}_2, \| \cdot \|_n) \, du \right\}.
\]
Taking expectations over \(X_{1:n} \), we have by (S39), (S49), and definition of \(H^*(\cdot) \),
\[
E \left\{ \sup_{f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_q| \right\} / C_2 \\
\leq E \left[\int_0^{\hat{\delta}_1 b_2} H^{1/2}\{u/(2\delta_2), \mathcal{F}_1, \| \cdot \|_{n,\infty}\} \, du + \int_0^{\hat{\delta}_1 b_1} H^{1/2}\{u/(2\delta_1), \mathcal{F}_2, \| \cdot \|_{n,\infty}\} \, du \right] \\
\leq E \left[\hat{\delta}_2 \psi_{n,\infty}(\hat{\delta}_1 b_2/\hat{\delta}_2, \mathcal{F}_1) + \hat{\delta}_1 \psi_{n,\infty}(\hat{\delta}_2 b_1/\hat{\delta}_1, \mathcal{F}_2) \right]. \tag{S40}
\]
By (S36) and the Hölder inequality, we have
\[
E \left\{ \tilde{\delta}_2 \psi_{n,\infty}(\tilde{\delta}_1 b_1/\tilde{\delta}_2, F_1) \right\} \leq B_{n1,\infty} b_2^{1-\beta_1/2} E \left(\tilde{\delta}_2^{\beta_1/2} \tilde{\delta}_1^{1-\beta_1/2} \right)
\]
\[
\leq B_{n1,\infty} b_2^{1-\beta_1/2} E^{\beta_1/2}(\tilde{\delta}_2) E^{1-\beta_1/2}(\tilde{\delta}_1) \leq B_{n1,\infty} b_2^{1-\beta_1/2} E^{\beta_1/4}(\tilde{\delta}_2) E^{(2-\beta_1)/4}(\tilde{\delta}_1),
\]
and similarly
\[
E \left\{ \tilde{\delta}_1 \psi_{n,\infty}(\tilde{\delta}_2 b_1/\tilde{\delta}_1, F_2) \right\} \leq B_{n2,\infty} b_1^{1-\beta_2/2} E^{\beta_2/4}(\tilde{\delta}_1) E^{(2-\beta_2)/4}(\tilde{\delta}_2).
\]
Then inequality (S37) follows from (S40) and Lemma 16. Moreover, inequality (S38) follows from Talagrand’s inequality (Lemma 14) because \(\|f_1 f_2\|_Q \leq \delta_1 b_2\) and \(\|f_1 f_2\|_\infty \leq b_1 b_2\) for \(f_1 \in F_1\) and \(f_2 \in F_2\).

By application of Lemma 6, we obtain the following result on uniform convergence of empirical inner products under conditions (57), (58), and (59).

Lemma 7. Suppose the conditions of Theorem 4 are satisfied for \(j = 1, 2\) and \(p = 2\). Let \(F_j = G_j^*(w_{nj})\) for \(j = 1, 2\). Then we have
\[
E \left\{ \sup_{f_1 \in F_1, f_2 \in F_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_Q| / C_2 \right\} \leq 2(1 + 2C_2C_4)C_4 n^{1/2} \Gamma_n \sigma_{w_{nj}}^2 \left(\gamma_{n1} \tilde{\gamma}_{n2} w_{nj1}^{\beta_1 \tau_2} + \gamma_{n2} \tilde{\gamma}_{n1} w_{nj1}^{\beta_2 \tau_1} \right),
\]
where \(0 < \tau_j \leq (2/\beta_j - 1)^{-1}\) and \(C_4 = \max_{j=1,2} C_{4,j}\) from condition (59), and \(\tilde{\gamma}_{nj} = n^{-1/2} w_{nj}^{-\tau_j}\). Moreover, we have for any \(t > 0\),
\[
\sup_{f_1 \in F_1, f_2 \in F_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_Q| / C_3 \leq E \left\{ \sup_{f_1 \in F_1, f_2 \in F_2} |\langle f_1, f_2 \rangle_n - \langle f_1, f_2 \rangle_Q| \right\} + w_{nj1} \left(C_4 t^{1/2} \tilde{\gamma}_{nj} + C_4^2 t^{\beta_1 \tau_2} \right),
\]
with probability at least 1 - \(e^{-t}\).

Proof. For \(f_j \in F_j\) with \(w_{nj} \leq 1\), we have \(\|f_j\|_{F_j} \leq 1\) and \(\|f_j\|_Q \leq w_{nj}\), and hence \(\|f_j\|_\infty \leq C_4 w_{nj}^{1-\tau_j}\) by (59). Let \(\psi_{n,\infty}(\cdot, F_j) = \psi_{n,\infty}(\cdot, w_{nj})\) from (58), that is, in the form (S36) such that (S49) is satisfied. We apply Lemma 6 with \(\delta_j = w_{nj}\) and \(b_j = C_4 w_{nj}^{1-\tau_j}\). By simple manipulation, we have
\[
n^{-1/2} \psi_{n,\infty}(b_j, F_j) = n^{-1/2} \psi_{nj,\infty}(C_4 w_{nj}^{1-\tau_j}, w_{nj})
\]
\[
\leq C_4 B_{nj,\infty} n^{-1/2} w_{nj}^{-\beta_j/2} w_{nj}^{1-(1-\beta_j/2)\tau_j} \leq C_4 \Gamma_n \gamma_{nj} w_{nj}^{1-\beta_j/2} \leq C_4 w_{nj},
\]

18
where $C_4 \geq 1$ is used in the second step, $B_{n_j, \infty} \leq \Gamma_n B_{n_j}$ and $(1 - \beta_j/2) \tau_j \leq \beta_j/2$ in the third step, and $\gamma_{n_j} \leq w_{n_j}$ and $\Gamma_n \gamma_{n_j} w_{n_j}^{-\beta_j/2} \leq \Gamma_n \gamma_{n_j}^{1-\beta_j/2}$ ≤ 1 in the fourth step. Therefore, inequality (S37) yields

$$E \left\{ \sup_{f_1 \in F_1, f_2 \in F_2} |(f_1, f_2)_n - (f_1, f_2)_Q| / C_2 \right\}$$

$$\leq 2(1 + 2C_2 C_4) n^{-1/2} w_{n_1}^{1-\beta_1/2} w_{n_2}^{\beta_2/2} \psi_{n_1, \infty}(C_4 w_{n_2}^{1-\tau_2}, w_{n_1})$$

$$+ 2(1 + 2C_2 C_4) n^{-1/2} w_{n_2}^{1-\beta_2/2} w_{n_1}^{\beta_2/2} \psi_{n_2, \infty}(C_4 w_{n_1}^{1-\tau_1}, w_{n_2})$$

$$\leq 2(1 + 2C_2 C_4) C_4 n^{-1/2} w_{n_1}^{1-\beta_1/2} B_{n_1, \infty} w_{n_2}^{\tau_2} + \beta_2 \tau_2$$

$$+ 2(1 + 2C_2 C_4) C_4 n^{-1/2} w_{n_2}^{1-\beta_2/2} B_{n_2, \infty} w_{n_1}^{\tau_1} + \beta_1 \tau_1 / 2,$$

which leads to the first desired inequality because $B_{n_j, \infty} \leq \Gamma_n B_{n_j}$. Moreover, simple manipulation gives

$$\delta_1 b_2 \sqrt{\frac{t}{n}} = C_4 w_{n_1} w_{n_2}^{1-\tau_2} \sqrt{\frac{t}{n}} = C_4 t^{1/2} w_{n_1} w_{n_2} \tilde{\gamma}_{n_2},$$

$$b_1 b_2 \frac{t}{n} = C_4^2 w_{n_1} \tilde{\gamma}_{n_1} w_{n_2} \frac{t}{n} = C_4^2 t w_{n_1} \tilde{\gamma}_{n_1} w_{n_2} \tilde{\gamma}_{n_2}.$$

The second desired inequality follows from (S38).

The following result concludes the proof of Theorem 4.

Lemma 8. In the setting of Theorem 4, let

$$\phi_n = 4C_2 C_3 (1 + 2C_2 C_4) C_4 n^{1/2} \Gamma_n \max_j \frac{\gamma_{n_j}}{\lambda_{n_j}} \max_j \frac{\tilde{\gamma}_{n_j} w_{n_j}^{\beta_j+\tau_j/2}}{\lambda_{n_j}^2}$$

$$+ \sqrt{2} C_3 C_4 \max_j \frac{\tilde{\gamma}_{n_j}}{\lambda_{n_j}} \max_j \sqrt{\frac{\log(p/\epsilon')}{\lambda_{n_j}}} + 2C_3 C_4^2 \max_j \frac{\tilde{\gamma}_{n_j}^2 \log(p/\epsilon')}{\lambda_{n_j}^2},$$

where $\tilde{\gamma}_{n_j} = n^{-1/2} w_{n_j}^{-\tau_j}$ and $\beta_{p+1} = \min_{j=1, \ldots, p} \beta_j$. Then

$$P \left\{ \sup_{g \in \mathcal{G}} \frac{\|g\|_n^2 - \|g\|_Q^2}{R_n^2(g)} > \phi_n \right\} \leq \epsilon'^2.$$

Proof. For $j = 1, \ldots, p$, let $r_{n_j}^*(g_j) = \|g_j\|_{F,j} + \|g_j\|_Q / w_{n_j}$ and $f_j = g_j / r_{n_j}^*(g_j)$. Then $\|f_j\|_{F,j} + \|f_j\|_Q / w_{n_j} = 1$ and hence $f_j \in \mathcal{G}_n^*(w_{n_j})$. By the decomposition $\|g\|_n^2 = \sum_{j,k} \langle g_j, g_k \rangle_n$, $\|g\|_Q^2 = \sum_{j,k} \langle g_j, g_k \rangle_Q$, and the triangle inequality, we have

$$\|g\|_n^2 - \|g\|_Q^2 \leq \sum_{j,k} |\langle g_j, g_k \rangle_n - \langle g_j, g_k \rangle_Q|$$

$$= \sum_{j,k} r_{n_j}^*(g_j) r_{n_k}^*(g_k) |\langle f_j, f_k \rangle_n - \langle f_j, f_k \rangle_Q|.$$
Because $R^{*2}(g) = \sum_{j,k} r_{nj}^*(g_j)r_{nk}^*(g_k)w_{nj}\lambda_{nj}w_{nk}\lambda_{nk}$, we have

$$\left\{ \sup_{g = \sum_{j=1}^p g_j} \frac{\|g\|_2^2 - \|g\|_Q^2}{R^{*2}(g)} > \phi_n \right\} = \bigcup_{g = \sum_{j=1}^p g_j} \left\{ \|g\|_2^2 - \|g\|_Q^2 > \phi_n R^{*2}(g) \right\}$$

$$\subset \bigcup_{j,k} \left\{ \sup_{f_j \in G^*(w_{nj}), f_k \in G^*(w_{nk})} |\langle f_j, f_k \rangle_n - \langle f_j, f_k \rangle_Q| > \phi_n w_{nj}\lambda_{nj}w_{nk}\lambda_{nk} \right\}$$

By Lemma 7 with $F_1 = G_{\epsilon}^*(w_{nj})$, $F_2 = G_{\epsilon}^*(w_{nk})$, and $t = \log(p^2/\epsilon^2)$, we have with probability no greater than ϵ^2/p^2,

$$\sup_{f_j \in G^*(w_{nj}), f_k \in G^*(w_{nk})} |\langle f_j, f_k \rangle_n - \langle f_j, f_k \rangle_Q|/C_3$$

$$> 4C_2(1 + 2C_2C_4)C_4n^{1/2}\Gamma_nw_{nj}\gamma_{nj}w_{nk}\gamma_{nk}$$

$$+ C_4n^{1/2}V_nw_{nj}\gamma_{nj}w_{nk}\gamma_{nk}\sqrt{\log(p^2/\epsilon^2)/n} + C_4^3V_n^2\log(p^2/\epsilon^2)w_{nj}\gamma_{nj}w_{nk}\gamma_{nk}.$$

Therefore, we have by the definition of ϕ_n,

$$P\left(\sup_{f_j \in G^*(w_{nj}), f_k \in G^*(w_{nk})} |\langle f_j, f_k \rangle_n - \langle f_j, f_k \rangle_Q| > \phi_n w_{nj}\lambda_{nj}w_{nk}\lambda_{nk} \right) \leq \frac{\epsilon^2}{p^2}.$$

The desired result follows from the union bound. \qed

S1.8 Proof of Theorem 5

We use the non-commutative Bernstein inequality (Lemma 15) to prove Theorem 5. Suppose that (X_1, \ldots, X_n) are independent variables in a set Ω. First, consider finite-dimensional functional classes F_j with elements of the form

$$f_j(x) = u_j^T(x)\theta_j, \quad \forall \theta_j \in \mathbb{R}^{d_j}, j = 1, 2,$$

where $u_j(x)$ is a vector of basis functions from Ω to \mathbb{R}^{d_j}, and θ_j is a coefficient vector. Let $U_j = \{u_j(X_1), \ldots, u_j(X_n)\}^\top$, and $\Sigma_{jj'} = E(U_j^\top U_{j'}/n) \in \mathbb{R}^{d_j \times d_{j'}}$. The population inner product is $\langle f_j, f_j' \rangle_Q = \theta_j^\top\Sigma_{jj'}\theta_{j'}$, $j, j' = 1, 2$. The difference between the sample and population inner products can be written as

$$\sup_{\|\theta_j\| = \|\theta_{j'}\| = 1} |\langle f_j, f_j' \rangle_n - \langle f_j, f_j' \rangle_Q| = \sup_{\|\theta_j\| = \|\theta_{j'}\| = 1} |\theta_j^\top(U_j^\top U_{j'}/n - \Sigma_{jj'})\theta_{j'}|$$

$$= \|U_j^\top U_{j'}/n - \Sigma_{jj'}\|_{S}.$$
Lemma 9. Let \(f_j \) be as in (S41). Assume that for a constant \(C_{5,1} \),

\[
\sup_{x \in \Omega} \| u_j(x) \|^2 \leq C_{5,1} \ell_j, \quad \forall j = 1, 2.
\]

Then for all \(t > 0 \),

\[
\left\| U_j^T U_j' / n - \Sigma_{jj'} \right\| S > \sqrt{\left(\ell_j \| \Sigma_{jj'} \| S \right) \vee \left(\ell_j' \| \Sigma_{jj'} \| S \right)} \sqrt{\frac{2C_{5,1} t}{n}} + C_{5,1} \sqrt{\ell_j \ell_j'} \frac{4t}{3n}
\]

with probability at least \(1 - (d_j + d_j') e^{-t} \).

Proof. Let \(M_i = u_j(X_i) u_j'(X_i) - E\{ u_j(X_i) u_j'(X_i) \} \). Because \(u_j(X_i) u_j'(X_i) \) is of rank 1, \(\| M_i \| S \leq 2 \sup_{x \in \Omega} \{ \| u_j(x) \| \| u_j'(x) \| \} \leq 2C_{5,1} \sqrt{\ell_j \ell_j'} \). Hence we set \(s_0 = 2C_{5,1} \sqrt{\ell_j \ell_j'} \) in Lemma 15. Similarly, \(W_{\text{col}} \leq C_{5,1} \ell_j \| \Sigma_{jj} \| S \) because

\[
E(M_i M_i^T) \leq E\{ u_j(X_i) u_j'(X_i) u_j(X_i) u_j'(X_i) \} \leq C_{5,1} \ell_j E\{ u_j(X_i) u_j'(X_i) \},
\]

and \(W_{\text{row}} \leq C_{5,1} \ell_j \| \Sigma_{jj'} \| S \). Thus, (S48) gives the desired result. \(\square \)

Now consider functional classes \(\mathcal{F}_j \) such that \(f_j \in \mathcal{F}_j \) admits an expansion

\[
f_j(\cdot) = \sum_{\ell=1}^{\infty} \theta_{j,\ell} u_{j,\ell}(\cdot),
\]

where \(\{ u_{j,\ell}(\cdot) : \ell = 1, 2, \ldots \} \) are basis functions and \(\{ \theta_{j,\ell} : \ell = 1, 2, \ldots \} \) are the associated coefficients.

Lemma 10. Let \(0 < \tau_j < 1 \), \(0 < w_{nj} \leq 1 \) and

\[
B_j = \left\{ f_j : \sum_{k/4 < \ell \leq k} \theta_{j,\ell}^2 \leq k^{-1/\tau_j} \forall k \geq \left(1 / w_{nj} \right)^{2\tau_j}, \sum_{0 \leq \ell \leq \tau_j} \theta_{j,\ell+1}^2 \leq w_{nj}^2 \right\}
\]

Suppose that (62) and (65) hold with certain positive constants \(C_{5,1}, C_{5,3} \). Then, for a certain constant \(C_{5,4} \) depending on \(\{ C_{5,1}, C_{5,3} \} \) only,

\[
\sup_{f_j \in B_j, f_j' \in B_j'} \left| \langle f_j, f_j' \rangle_n - \langle f_j, f_j' \rangle_Q \right|
\]

\[
\leq C_{5,4} w_{nj} w_{nj'} \left(\mu_j w_{nj}^{-\tau_j} + \mu_j' w_{nj'}^{-\tau_j'} \right) \sqrt{\left\{ \mu_j + \mu_j' + \log(w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j'}) + t \right\} / n}
\]

\[
+ \left\{ \mu_j + \mu_j' + \log(w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j'}) + t \right\} \left(\mu_j w_{nj}^{-\tau_j} (\mu_j' w_{nj'}^{-\tau_j'}) / n \right)
\]

with at least probability \(1 - e^{-t} \) for all \(t > 0 \), where \(\mu_j = 1 / (1 - \tau_j) \).
Proof. Let $\ell_{jk} = [(2^k/w_{nj})^{2\tau_j}]$. We group the basis and coefficients as follows:

$$u_{j,G_{jk}}(x) = (u_{j\ell}(x), \ell \in G_{jk})^T, \quad \theta_{j,G_{jk}} = (\theta_{j\ell}, \ell \in G_{jk})^T, \quad k = 0, 1, \ldots$$

where $G_{j0} = \{1, \ldots, \ell_{j0}\}$ of size $|G_{j0}| = \ell_{j0}$ and $G_{jk} = \{\ell_{jk-1} + 1, \ldots, \ell_{jk}\}$ of size $|G_{jk}| = \ell_{jk} - \ell_{jk-1} \leq (2^k/w_{nj})^{2\tau_j}$ for $k \geq 1$. Define $\tilde{\theta}_j$, a rescaled version of θ_j, by

$$\tilde{\theta}_{j,G_{jk}} = (\tilde{\theta}_{j\ell}, \ell \in G_{jk}) = 2^k w_{nj}^{-1} \theta_{j,G_{jk}}.$$

It follows directly from (63) and (64) that

$$\|\tilde{\theta}_{j,G_{j0}}\|_2 \leq 1, \quad \|\tilde{\theta}_{j,G_{jk}}\|_{r_j} \leq (2^k/w_{nj})^{\ell_{j0}^{-1}(2\tau_j)} \leq 1 \forall k \geq 1, \forall f_j \in B_j.$$

Let $U_{jk} = \{u_{j,G_{jk}}(X_1), \ldots, u_{j,G_{jk}}(X_n)\}^T \in \mathbb{R}^{n \times |G_{jk}|}$. We have

$$\sup_{f_j \in B_j, f_{j'} \in B_{j'}} \left| \langle f_j, f_{j'} \rangle_n - \langle f_j, f_{j'} \rangle L_2 \right| = \sup_{f_j \in B_j, f_{j'} \in B_{j'}} \left| \left(\sum_{k=0}^\infty \sum_{\ell=0}^\infty \tilde{\theta}_{j,G_{jk}}^T \left[U_{jk}^T U_{j',\ell} / n - EU_{jk}^T U_{j',\ell} / n \right] \tilde{\theta}_{j',G_{j'}} \right) \right| \leq \max_{\|\tilde{\theta}_j\|_2, \|\tilde{\theta}_{j'}\|_2} \left| \sum_{k=0}^\infty \sum_{\ell=0}^\infty \tilde{\theta}_{j,G_{jk}}^T \left[U_{jk}^T U_{j',\ell} / n - EU_{jk}^T U_{j',\ell} / n \right] \tilde{\theta}_{j',G_{j'}} / \left(2^k w_{nj}^{10} w_{nj'}^{10} / \sqrt{5} \right) \right|.$$

(S42)

Let $a_k = 1/\{(k+1)(k+2)\}$. By (62), $\sup_{x \in \Omega} \|u_{j,G_{jk}}(x)\|^2 \leq \sup_{x \in \Omega} \sum_{k=0}^{\ell_{jk}} u_{j\ell}^2(x) \leq C_{5.1} \ell_{jk}$ for $k \geq 0$. By (65), $\|E U_{jk}^T U_{j',\ell} / n\|_S \leq C_{5.3}$. Because $|G_{jk}| \leq \ell_{jk}$, it follows from Lemma 9 that

$$\|U_{jk}^T U_{j',\ell} / n - EU_{jk}^T U_{j',\ell} / n\|_S \leq \left\{ \log(\ell_{jk} + 2) - \log(a_k a_\ell) + t \right\} 2 C_{5.1} C_{5.3} (\ell_{jk} + 2) / n + \left\{ \log(\ell_{jk} + 2) - \log(a_k a_\ell) + t \right\} (4/3) C_{5.1} \sqrt{\ell_{jk} \ell_{j'} / n}.$$

(S43)

with probability at least $1 - a_k a_\ell e^{-t}$ for any fixed $k \geq 0$ and $\ell \geq 0$. By the union bound and the fact that $\sum_{k=0}^\infty a_k = 1$, inequality (S43) holds simultaneously for all $k \geq 0$ and $\ell \geq 0$ with probability at least $1 - e^{-t}$. Because $\ell_{jk} = [(2^k/w_{nj})^{2\tau_j}]$, we rewrite (S43) as

$$\|U_{jk}^T U_{j',\ell} / n - EU_{jk}^T U_{j',\ell} / n\|_S \leq C_{5.4} \left[\left(2^{\tau_j} w_{nj}^{-\tau_j} + 2^{\tau_j} w_{nj'}^{-\tau_j} \right)^{\log \left(\left(k + \ell + \log(w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j}) + t \right) / n \right)} + \left(2^{\tau_j} w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j} \right)^{\log \left(\left(2^{\tau_j} w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j} \right) / n \right)} \right].$$

(S44)
where \(C_{5,4} \) is a constant depending only on \(\{ C_{5,1}, C_{5,3} \} \). For any \(\alpha \geq 0, \sum_{k=0}^{\infty} k^{\alpha} 2^{-k(1-\tau_j)} \leq C_{\alpha} \mu_j^{\alpha+1} \), where \(C_{\alpha} \) is a numerical constant and \(\mu_j = 1/(1-\tau_j) \). Using this fact and inserting (S44) into (S42) yields the desired result.

Finally, the following result concludes the proof of Theorem 5.

Lemma 11. In the setting of Theorem 5, let

\[
\phi_n = C_{5,2} C_{5,4} \left\{ \max_j \frac{\sqrt{2 \log(np/\epsilon')}}{\lambda_{nj}} \mu_j \bar{r}_{nj}, \frac{2 \log(np/\epsilon') \mu_j^2 \bar{r}_{nj}^2}{\lambda_{nj}^2} \right\},
\]

where \(\bar{r}_{nj} = n^{-1/2} w_{nj}^{-\tau_j} \), \(\mu_j = 1/(1-\tau_j)^{-1} \), and \(C_{5,4} \) is a constant depending only on \(\{ C_{5,1}, C_{5,3} \} \) as in Lemma 10. Then

\[
P \left\{ \sup_{g \in \mathcal{G}} \left| \frac{\|g\|^2_n - \|g\|^2_Q}{R_n^2(g)} \right| \geq \phi_n \right\} \leq \epsilon'^2.
\]

Proof. Recall that \(\ell_{jk} = \lfloor (2^k/w_{nj})^{2\tau_j} \rfloor \). For \(g_j = \sum_{\ell=1}^{\infty} \theta_{j,\ell} u_{j,\ell} \), define \(r_{nj}(g_j) \) by

\[
r_{nj}^2(g_j) = \left(\sum_{\ell=1}^{\ell_{j0}} \theta_{j,\ell}^2 / w_{nj}^2 \right) \vee \left(\max_{k \geq 1} \sum_{\ell_{j,k-1} < \ell \leq \ell_{jk}} \theta_{j,\ell}^2 \ell_{j,\ell}^{1/\tau_j} \right).
\]

Let \(f_j = g_j / r_{nj}(g_j) \) and \(\mu_j = 1/(1-\tau_j) \). Then \(f_j \in \mathcal{B}_2 \) as in Lemma 10 and

\[
\left| \|g\|^2_n - \|g\|^2_Q \right| \leq \sum_{j=1}^{p} \sum_{j'=1}^{p} \left| \langle g_j, g_{j'} \rangle_n - \langle g_j, g_{j'} \rangle_Q \right|
= \sum_{j=1}^{p} \sum_{j'=1}^{p} r_{nj}(g_j) r_{nj'}(g_{j'}) \left| \langle f_j, f_{j'} \rangle_n - \langle f_j, f_{j'} \rangle_Q \right|.
\]

Because \(\sum_{j=1}^{p} w_{nj} \lambda_{nj} r_{nj}(g_j) \leq \sum_{j=1}^{p} C_{5,2}^{1/2} \lambda_{nj} (w_{nj} \|g_j\|_{F,j} + \|g_j\|_Q) = C_{5,2}^{1/2} R_n^2(g) \) by (63),

\[
\left\{ \sup_{g \in \mathcal{G}} \left| \frac{\|g\|^2_n - \|g\|^2_Q}{R_n^2(g)} \right| \geq \phi_n \right\}
\subset \bigcup_{j,j'} \left\{ \sup_{f_j \in B_j, f_{j'} \in B_{j'}} \left| \langle f_j, f_{j'} \rangle_n - \langle f_j, f_{j'} \rangle_Q \right| > C_{5,2}^{-1/2} \phi_n w_{nj} \lambda_{nj} w_{nj'} \lambda_{nj'} \right\}.
\]

By Lemma 10 with \(t = \log(p^2/\epsilon'^2) \) and \(e^{\epsilon'^2} + 2 w_{nj}^{-\tau_j} \leq n \), we have

\[
\sup_{f_j \in B_j, f_{j'} \in B_{j'}} \left| \langle f_j, f_{j'} \rangle_n - \langle f_j, f_{j'} \rangle_Q \right|
\leq C_{5,4} w_{nj} w_{nj'} \left\{ (\mu_j w_{nj}^{-\tau_j} + \mu_j' w_{nj'}^{-\tau_j'}) \sqrt{\{ \mu_j + \mu_j' + \log(\sum_{j=1}^{p} \lambda_{nj} \|w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j'}\|_n)} + \log(p^2/\epsilon'^2)\} / n \right.
+ \{ \mu_j + \mu_j' + \log(\sum_{j=1}^{p} \lambda_{nj} \|w_{nj}^{-\tau_j} + w_{nj'}^{-\tau_j'}\|_n)} \left(\mu_j w_{nj}^{-\tau_j} \mu_j' w_{nj'}^{-\tau_j'} \right) / n \right\}
\leq C_{5,4} w_{nj} w_{nj'} \left\{ (\mu_j w_{nj}^{-\tau_j} + \mu_j' w_{nj'}^{-\tau_j'}) \sqrt{2 \log(np/\epsilon')} / n + 2 \log(p/\epsilon')(\mu_j w_{nj}^{-\tau_j})(\mu_j' w_{nj'}^{-\tau_j'}) / n \right\},
\]

23
with probability at least $1 - \epsilon^2/p^2$. By the definition of ϕ_n, we have

$$P \left\{ \sup_{f_j \in B_j, f_j' \in B_j'} |\langle f_j, f_j'\rangle_n - \langle f_j, f_j'\rangle_Q| \leq C_{5,2}^{-1} \phi_n w_n j \cdot \lambda_n j \cdot \lambda_n j' \right\} \geq 1 - \frac{\epsilon^2}{p^2}.$$

The conclusion follows from the union bound using (S45).

\[\square \]

S2 Technical tools

S2.1 Sub-Gaussian maximal inequalities

The following maximal inequality can be obtained from van de Geer (2000, Corollary 8.3), or directly derived using Dudley’s inequality for sub-Gaussian variables and Chernoff’s tail bound (see Proposition 9.2, Bellec et al. 2016).

Lemma 12. For $\delta > 0$, let F_1 be a functional class such that $\sup_{f_1 \in F_1} \|f_1\|_n \leq \delta$, and

$$\psi_n(\delta, F_1) \geq \int_0^\delta H^{1/2}(u, F_1, \|\cdot\|_n) \, du. \quad (S46)$$

Let $(\varepsilon_1, \ldots, \varepsilon_n)$ be independent sub-Gaussian variables under Assumption 1. Then for any $t > 0$,

$$P \left\{ \sup_{f_1 \in F_1} |\langle \varepsilon, f_1\rangle_n| / C_1 > n^{-1/2} \psi_n(\delta, F_1) + \delta \sqrt{1/n} \right\} \leq \exp(-t),$$

where $C_1 = C_1(D_0, D_1) > 0$ is a constant, depending only on (D_0, D_1).

S2.2 Dudley and Talagrand inequalities

The following inequalities are due to Dudley (1967) and Talagrand (1996).

Lemma 13. For $\delta > 0$, let F_1 be a functional class such that $\sup_{f_1 \in F_1} \|f_1\|_n \leq \delta$ and (S46) holds. Let $(\sigma_1, \ldots, \sigma_n)$ be independent Rademacher variables, that is, $P(\sigma_i = 1) = P(\sigma_i = -1) = 1/2$. Then for a universal constant $C_2 > 0$,

$$E \left\{ \sup_{f_1 \in F_1} |\langle \sigma, f_1\rangle_n| / C_2 \right\} \leq n^{-1/2} \psi(\delta, F_1).$$

Lemma 14. For $\delta > 0$ and $b > 0$, let (X_1, \ldots, X_n) be independent variables, and F be a functional class such that $\sup_{f \in F} \|f\|_Q \leq \delta$ and $\sup_{f \in F} \|f\|_\infty \leq b$. Define

$$Z_n = \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^n \{ f(X_i) - E f(X_i) \} \right|.$$
Then for a universal constant $C_3 > 0$, we have

$$P \left\{ \frac{Z_n}{C_3} > E(Z_n) + \delta \sqrt{\frac{t}{n} + b \frac{t}{n}} \right\} \leq \exp(-t), \quad t > 0.$$

S2.3 Non-commutative Bernstein inequality

We state the non-commutative Bernstein inequality (Troop, 2011) as follows.

Lemma 15. Let $\{M_i : i = 1, \ldots, n\}$ be independent random matrices in $\mathbb{R}^{d_1 \times d_2}$ such that $E(M_i) = 0$ and $P\{\|M_i\| \leq s_0\} = 1$, $i = 1, \ldots, n$, for a constant $s_0 > 0$, where $\| \cdot \|_S$ denotes the spectrum norm of a matrix. Let $\Sigma_{\text{col}} = \sum_{i=1}^n E(M_iM_i^T)/n$ and $\Sigma_{\text{row}} = \sum_{i=1}^n E(M_i^TM_i)/n$. Then, for all $t > 0$,

$$P\left\{ \frac{1}{n} \sum_{i=1}^n M_i > t \right\} \leq (d_1 + d_2) \exp \left(\frac{-n t^2 / 2}{\| \Sigma_{\text{col}} \|_S \sqrt{\| \Sigma_{\text{row}} \|_S + s_0 t / 3}} \right).$$

Consequently, for all $t > 0$,

$$P\left\{ \frac{1}{n} \sum_{i=1}^n M_i > \sqrt{\| \Sigma_{\text{col}} \|_S \sqrt{\| \Sigma_{\text{row}} \|_S}} \sqrt{2t / n} + (s_0 / 3)2t / n \right\} \leq (d_1 + d_2)e^{-t}.$$

S2.4 Convergence of empirical norms

For $\delta > 0$ and $b > 0$, let \mathcal{F}_1 be a functional class such that

$$\sup_{f_1 \in \mathcal{F}_1} \| f_1 \|_Q \leq \delta, \quad \sup_{f_1 \in \mathcal{F}_1} \| f_1 \|_\infty \leq b,$$

and let $\psi_{n,\infty}(\cdot, \mathcal{F}_1)$ be an upper envelope of the entropy integral:

$$\psi_{n,\infty}(z, \mathcal{F}_1) \geq \int_0^z H^*(u/2, \mathcal{F}_1, \| \cdot \|_{n,\infty}) \, du, \quad z > 0,$$

where $H^*(u, \mathcal{F}_1, \| \cdot \|_{n,\infty}) = \sup_{(X_1^{(1)}, \ldots, X_n^{(1)})} H(u, \mathcal{F}_1, \| \cdot \|_{n,\infty})$. Let $\delta = \sup_{f_1 \in \mathcal{F}_1} \| f_1 \|_n$. The following result can be obtained from Guedon et al. (2007) and, in its present form, van de Geer (2014), Theorem 2.1.

Lemma 16. For the universal constant C_2 in Lemma 13, we have

$$E \left\{ \sup_{f_1 \in \mathcal{F}_1} \| f_1 \|_n^2 - \| f_1 \|_Q^2 \right\} \leq \frac{2\delta C_2 \psi_{n,\infty}(b, \mathcal{F}_1)}{\sqrt{n}} + \frac{4C_2^2 \psi^2_{n,\infty}(b, \mathcal{F}_1)}{n}.$$

Moreover, we have

$$\sqrt{E(\delta^2)} \leq \delta + \frac{2C_2 \psi_{n,\infty}(b, \mathcal{F}_1)}{\sqrt{n}}.$$
S2.5 Metric entropies

For \(r \geq 1 \) and \(m > 0 \) (possibly non-integral), let \(\mathcal{W}_r^m = \{ f : \| f \|_{L_r} + \| f^{(m)} \|_{L_r} \leq 1 \} \). The following result is taken from Theorem 5.2, Birman & Solomjak (1967).

Lemma 17. If \(rm > 1 \) and \(1 \leq q \leq \infty \), then

\[
H(u, \mathcal{W}_r^m, \cdot \cdot \cdot L_q) \leq B_1 u^{-1/m}, \quad u > 0,
\]

where \(B_1 = B_1(m, r) > 0 \) is a constant depending only on \((m, r) \). If \(rm \leq 1 \) and \(1 \leq q < r/(1 - rm) \), then

\[
H(u, \mathcal{W}_r^m, \cdot \cdot \cdot L_q) \leq B_2 u^{-1/m}, \quad u > 0,
\]

where \(B_2 = B_2(m, r, q) > 0 \) is a constant depending only on \((m, r, q) \).

For \(m \geq 1 \), let \(\mathcal{V}_r^m = \{ f : \| f \|_{L_1} + \text{TV}(f^{(m-1)}) \leq 1 \} \). The following result can be obtained from Theorem 15.6.1, Lorentz et al. (1996), on the metric entropy of the ball \(\{ f : \| f \|_{L_r} + [f]_{\text{Lip}(m, L_r)} \leq 1 \} \), where \([f]_{\text{Lip}(m, L_r)}\) is a semi-norm in the Lipschitz space Lip\((m, L_r)\). By Theorem 9.9.3, DeVore & Lorentz (1993), the space Lip\((m, L_1)\) is equivalent to \(\mathcal{V}_r^m \), with the semi-norm \([f]_{\text{Lip}(m, L_r)}\) equal to \(\text{TV}(f) \), up to suitable modification of function values at (countable) discontinuity points. However, it should be noted that the entropy of \(\mathcal{V}_r^1 \) endowed with the norm \(\cdot \cdot \cdot L_\infty \) is infinite.

Lemma 18. If \(m \geq 2 \) and \(1 \leq q \leq \infty \), then

\[
H(u, \mathcal{V}_r^m, \cdot \cdot \cdot L_q) \leq B_3 u^{-1/m}, \quad u > 0,
\]

where \(B_3 = B_3(m) > 0 \) is a constant depending only on \(m \). If \(1 \leq q < \infty \), then

\[
H(u, \mathcal{V}_r^1, \cdot \cdot \cdot L_q) \leq B_4 u^{-1}, \quad u > 0,
\]

where \(B_4 = B_4(r) > 0 \) is a constant depending only on \(r \).

By the continuity of functions in \(\mathcal{W}_r^m \) for \(m \geq 1 \) and \(\mathcal{V}_r^m \) for \(m \geq 2 \), the maximum entropies of these spaces in \(\cdot \cdot \cdot \cdot \cdot L_\infty \) and \(\cdot \cdot \cdot \cdot \cdot L_\infty \) norms over all possible design points can be derived from Lemmas 17 and 18.

Lemma 19. If \(rm > 1 \), then for \(B_1 = B_1(m, r) \),

\[
H^*(u, \mathcal{W}_r^m, \cdot \cdot \cdot n) \leq H^*(u, \mathcal{W}_r^m, \cdot \cdot \cdot n) \leq B_1 u^{-1/m}, \quad u > 0,
\]
and hence (S46) and (S49) hold with \(\psi_n(z, \mathcal{W}_r^m) \preceq \psi_{n, \infty}(z, \mathcal{W}_r^m) \preceq z^{1-1/(2m)} \). If \(m \geq 2 \), then for \(B_3 = B_3(m) \),

\[H^*(u, \mathcal{V}_r^m, \| \cdot \|_n) \leq H^*(u, \mathcal{V}_r^m, \| \cdot \|_{n, \infty}) \leq B_3 u^{-1/m}, \quad u > 0, \]

and hence (S46) and (S49) hold with \(\psi_n(z, \mathcal{V}_r^m) \preceq \psi_{n, \infty}(z, \mathcal{V}_r^m) \preceq z^{1-1/(2m)} \).

The maximum entropies of \(\mathcal{V}_1 \) over all possible design points can be obtained from Section 5, Mammen (1991) for the norm \(\| \cdot \|_n \) and Lemma 2.2, van de Geer (2000) for the norm \(\| \cdot \|_{n, \infty} \). In fact, the proof of van de Geer shows that for \(\mathcal{F} \) the class of nondecreasing functions \(f : [0, 1] \to [0, 1] \), \(H^*(u, \mathcal{F}, \| \cdot \|_{n, \infty}) \leq n \log(n + u^{-1}) \) if \(u \leq n^{-1} \) or \(\leq u^{-1} \log(n + u^{-1}) \) if \(u > n^{-1} \). But if \(u \leq n^{-1} \), then \(n \log(n + u^{-1}) \leq n \log n + u^{-1} \log(n + u^{-1}) \leq (1 + \log n)u^{-1} \). If \(u > n^{-1} \), then \(u^{-1} \log(n + u^{-1}) \leq u^{-1} \log(2n) \). Combining the two cases gives the stated result about \(H^*(u, \mathcal{V}_1^1, \| \cdot \|_{n, \infty}) \), because each function in \(\mathcal{V}_1^1 \) can be expressed as a difference two nondecreasing functions.

Lemma 20. For a universal constant \(B_5 > 0 \), we have

\[H^*(u, \mathcal{W}_1^m, \| \cdot \|_n) \leq H^*(u, \mathcal{V}_1^1, \| \cdot \|_n) \leq B_5 u^{-1}, \quad u > 0, \]

and hence (S46) holds with \(\psi_n(z, \mathcal{W}_1^m) \preceq \psi_n(z, \mathcal{V}_1^1) \preceq z^{1/2} \). Moreover, for a universal constant \(B_6 > 0 \), we have

\[H^*(u, \mathcal{W}_1^m, \| \cdot \|_{n, \infty}) \leq H^*(u, \mathcal{V}_1^1, \| \cdot \|_{n, \infty}) \leq B_6 \frac{1 + \log n}{u}, \quad u > 0, \]

and hence (S49) holds with \(\psi_{n, \infty}(z, \mathcal{W}_1^m) \preceq \psi_{n, \infty}(z, \mathcal{V}_1^1) \preceq (1 + \log n)^{1/2}(z/2)^{1/2} \).

S2.6 Interpolation inequalities

The following inequality (S50) can be derived from the Gagliardo-Nirenberg inequality for Sobolev spaces (Theorem 1, Nirenberg 1966). Inequality (S51) can be shown by approximating \(f \in \mathcal{V}_m^m \) by functions in \(\mathcal{W}_1^m \).

Lemma 21. For \(r \geq 1 \) and \(m \geq 1 \), we have for any \(f \in \mathcal{W}_r^m \),

\[
\|f\|_{\infty} \leq (C_4/2) \left\{ \|f^{(m)}\|_{L_r} + \|f\|_{L_2} \right\}^\tau \|f\|_{L_2}^{1-\tau}, \tag{S50}
\]

where \(\tau = (2m + 1 - 2/r)^{-1} \leq 1 \) and \(C_4 = C_4(m, r) \geq 1 \) is a constant depending only on \((m, r) \).

In addition, we have for any \(f \in \mathcal{V}_m^m \),

\[
\|f\|_{\infty} \leq (C_4/2) \left\{ \text{TV}(f^{(m-1)}) + \|f\|_{L_2} \right\}^\tau \|f\|_{L_2}^{1-\tau}. \tag{S51}
\]
From this result, $\|f\|_{\infty}$ can be bounded in terms of $\|f\|_{L_2}$ and $\|f^{(m)}\|_{L_r}$ or $\text{TV}(f^{(m-1)})$ in a convenient manner. For $f \in \mathcal{W}_r^m$ and $0 < \delta \leq 1$, if $\|f\|_{L_2} \leq \delta$ and $\|f^{(m)}\|_{L_r} \leq 1$, then $\|f\|_{\infty} \leq C_4 \delta^{1-1/(2m+1-2/r)}$. Similarly, for $f \in \mathcal{V}^m$ and $0 < \delta \leq 1$, if $\|f\|_{L_2} \leq \delta$ and $\text{TV}(f^{(m-1)}) \leq 1$, then $\|f\|_{\infty} \leq C_4 \delta^{1-1/(2m-1)}$.

References

